Navigant Research Blog

Reserve Margins Undermined by Climate Change in the West

— June 10, 2015

A recent Arizona State University report has found that estimated reserve margins across the Western states will be far lower than previous estimates suggest. Reserve margins are a measure of available generation capacity over and above the capacity needed to meet normal peak demand levels. Regulatory bodies usually require producers and transmission facilities to maintain a constant reserve margin of 10% to 20% of normal capacity as insurance against breakdowns across the system or sudden increases in energy demand.

The study, which looks at power delivery over the next 50 years for the 14 Western states served by the Western Electricity Coordinating Council (WECC), found that extreme heat events and drought are occurring with greater frequency and duration, putting a significant strain on installed and planned generation capacity.  According to estimates published in the study, power providers may be overestimating planning reserve margins by as much as 20% to 25%.

For a system designed to deliver safe, affordable, and reliable power, this is a problem. Power providers do not currently account for climate change impacts in their operations, which could leave utilities and grid operators more exposed to unforeseen weather events than previously thought.

Varied Impacts

According to the study, forecasts about the impact on specific generation sources vary. Baseload nuclear and coal power plant capacity would be most impacted by reduced cooling water during the hottest days. Reduced stream flow would is also expected to reduce hydroelectric capacity in drier regions, but increased precipitation, particularly in the Pacific Northwest, could temper these losses. Although, combustion turbines – fueled by natural gas or renewable natural gas (RNG) in some cases – and solar PV lose output as air temperate rises, the impact on solar PV capacity is expected to be negligible. The researchers also concluded that potential changes in wind speed and air density would not have a major impact on wind generation capacity.

The study points to increased momentum behind the power grid becoming more distributed and dynamic. Not only are solar PV, energy efficiency, and other distributed energy resources (DER) a powerful tool for reducing greenhouse gas emissions across the grid, with the emergence of the energy cloud, they will help utilities and grid operators deliver on their obligation to provide safe, affordable, and reliable power.

A Way Forward

Increased penetration of DER also reduces the impact of line loss, a key issue across the West. As bulk high-voltage power cable shoulders the burden of moving capacity from remote areas to population centers dispersed across the expansive Western region, aging high-voltage power cables are prone to expansion and sagging, causing more resistance across the system and requiring increasing levels of generation. Severe heat events could exacerbate the situation further, eventually posing a threat to public safety.

Although the Arizona State University study is worrisome, many of the innovations and tools necessary to mitigate the impact of climate change on the grid are available today. Efforts by the U.S. Environmental Protection Agency to regulate carbon emissions in the power sector through the Clean Power Plan (CPP) are expected to force utilities and regulators to shift the generation mix away from heavily polluting generation sources, which would help insulate the WECC region from the impact of severe heat and drought.

 

In Golden Age, Natural Gas Becomes Generation Workhorse

— March 9, 2015

The promised golden age of natural gas has begun to take hold globally. Fortunately, rising natural gas demand will not require a corresponding increase in infrastructure spending across the United States, according to a recent report from the U.S. Department of Energy. These findings hold even as the U.S. electric power sector—currently the largest consumer of natural gas in the country—saw generation from natural gas replace that of coal in recent months. This corresponds with a sharp increase in demand for natural gas from multiple end-use sectors.

With the Henry Hub reference price for natural gas in the United States lingering below $5 per million Btu (mmBtu) since the early part of 2014, a demand surge is expected to continue across the power generation sector.

Renewables and Gas

The United States, already the largest consumer of natural gas in the world, is expected to see a 33% increase in demand by 2040, according to the U.S. Energy Information Administration’s Annual Energy Outlook 2014 reference case. Growth is expected to be 42% for the electric power sector between 2012 and 2040 under the same scenario.

Living up to its promise as a bridge fuel to a low carbon future, natural gas is helping backfill baseload generation, especially in areas where coal plant retirements are highest. The combination of wind or solar power and gas-fired generation, meanwhile, has emerged as an option for states looking for more access to lower-carbon electricity. This hybrid approach is playing out across the expansive areas of the West, where electrical grid transmission bottlenecks have made it difficult to export renewable generation from areas of high productivity (e.g., Wyoming) to population centers on the West Coast, for example.

Not Laying Pipe

The increased use of natural gas in the electric power sector, however, is not without potential challenges. Unlike competing fuels, natural gas is delivered as it is consumed, and cannot be stored onsite like coal. Furthermore, adequate infrastructure is needed to maintain electric system reliability. The investment of $65 billion in new interstate pipeline construction over the past 18 years appears to be sufficient to deliver natural gas from producing regions to end users across the country without substantial new investment.

Unlike the U.S. electrical grid, natural gas power plants and natural gas production are both broadly distributed rather than geographically concentrated, reducing constraints on interstate pipeline capacity. What’s more, lower-cost investment options, such as improving the utilization of existing infrastructure and rerouting gas flows, are far cheaper than building new pipelines.

As the U.S. power sector faces several concurrent transitions—retirement of coal-fired generation, aging electrical transmission infrastructure, and a surge in the use of intermittent renewables—these findings suggest that natural gas will continue its emergence as the workhouse on the modern electrical grid.

 

The Geopolitics of Energy Efficiency

— January 15, 2015

The crisis in Ukraine has put the country’s energy security at risk.  Among other threats to the country’s economic stability, natural gas supply is a lingering concern.  In December, Naftogaz, Ukraine’s state-owned gas company, managed to settle the $3.1 billion debt it owed to Russia’s Gazprom, averting the risk of gas supply being shut down.  Longer term, there’s a little noticed solution: investing in energy efficiency could help Ukraine avoid importing any gas from Russia.

According to the International Energy Agency, Ukraine’s energy intensity is nearly 3 times greater than the average for Organisation for Economic Co-operation and Development (OECD) countries and 25% greater than the average for non-OECD European and Eurasian countries.  Energy efficiency has not been a priority in the former Soviet republics.  Subsidies provided by the gas monopoly that were designed to keep the populace complacent also created a disincentive to upgrade Soviet-era equipment and controls.

After the Fall

After the fall of the Berlin Wall, many of the same problems plaguing Ukraine were faced by East Germans.  But, since reunification, hundreds of buildings with poor thermal characteristics in East Germany have been demolished and replaced with more efficient ones.  Additionally, in the buildings that remain, major upgrades were made to the thermal envelope and heating systems were replaced.  As a result, total energy use in Germany fell between 1996 and 2008.

To be sure, some modernization projects are happening in Ukraine.  In Odessa, upgrades to a district heating network provided total energy savings of 50%.  But antiquated heating systems in Ukraine suffer from years of neglected maintenance.  In addition to the equipment, heating controls are an issue.  Many systems only have basic on-off control, they are either heating at full blast or are off – a terribly wasteful limitation.    Easy efficiency investment opportunities with short paybacks are abundant in Ukraine.  But, as with many energy efficiency investments, financing is the hurdle.  The problem is especially acute in Ukraine, as loans from the International Monetary Fund are keeping the country afloat.

Future of Financing

Worldwide, major changes in financing options seem to be in store for 2015, aimed at lowering the cash needed for energy efficient investments.  By converting upfront capital investments into operating savings through innovative finance, more projects will get the green light.  To date, energy service companies (ESCOs) have served as the primary means of outside funding for energy efficiency improvement projects.  But new approaches, such as independent energy savings insurance products, are beginning to emerge.  Currently, private real estate fund managers have $110 billion of equity available for investment, an all-time high.  As the situation in Ukraine demonstrated, there are abundant opportunities for investment being overlooked.  The changing world of energy efficiency financing appears to be the clearest way to bridge that gap.

 

Will Coal Plant Retirements and Fracking Threaten Electric Reliability?

— December 17, 2014

The implications of the rapid retirement of much of the U.S. coal generation fleet are just coming to light, and transmission operators and generation utilities are actively discussing and planning on contingencies that could cause a real threat to reliability and availability in many regions across the nation.  (The issues around retiring and decommissioning coal plants were discussed in Navigant Research’s research brief, Coal Plant Decommissioning.)  Compounding the threat of coal generation plant retirements is a short-term shortage of coal in many regions of the nation.

The U.S. Environmental Protection Agency (EPA) announced its proposed Clean Power Plan (CPP) rule in June 2014.  It’s expected that the final rule will be announced in June 2015.  The CPP targets CO2 emissions by existing fossil-fueled electric generation and sets targeted reductions for each state.  The plan, as currently proposed, mandates 30% reductions in carbon emissions by 2030 from 2005 levels.

The proposed plan also gives each state flexibility to develop its own approach as to how it will meet the targets, including retiring problematic coal and other fossil fuel generation, adding renewables, such as wind or solar generation, or increasing levels of demand response and energy efficiency programs, which the recent EPA mandates may accelerate.

Time to Plan

Most people do not understand the issues that will arise in the Midwest and the southeastern United States as a result of coal generation plant retirements.  The North American Electric Reliability Corporation (NERC) discusses the implications at length in a recent paper on the impact of generation plant retirements based on the CPP.  NERC concludes the paper by suggesting that states immediately start operational and planning scenario studies, addressing resource adequacy, transmission adequacy, dynamic stability, and  economic and reliability impacts.  This must be done to demonstrate reliability and to ensure that plans of action are technically achievable within the stated time requirements.  “States that largely rely on fossil-fuel resources might need to make significant changes to their power systems to meet the EPA’s target for carbon reductions while maintaining system reliability,” the NERC authors conclude.

Supplies Down

In the near term, another related reliability threat is looming: the availability of coal to fuel the generation plants operating today.  Having formed a new trade group called the Western Coal Traffic League, Midwestern utilities are frustrated because their normal coal supplies from western U.S. coal producers have kept utilities from rebuilding stockpiles burned during last year’s cold winter. Compounding the effect, record harvests, economic growth, and growing oil shipments from the country’s booming oil fracking industry in in the upper Midwest are constraining the rail system.

The effective implementation of the CPP, along with tight supplies of coal, will make for an interesting winter in many parts of the United States.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Natural Gas","path":"\/tag\/natural-gas","date":"7\/4\/2015"}