Navigant Research Blog

Take Control of Your Future, Part IV: Power Generation Shift

— May 20, 2016

Oil and Gas ProductionDale Probasco and Rob Patrylak also contributed to this post.

In the initial blog of this series, I discussed seven megatrends that are fundamentally changing how we produce and use power. Here, I discuss how the shift in the power generation fuel mix is changing our industry.

Generation Fuel Mix Shift Is Accelerating

The electric grid in the United States has relied heavily on nuclear and coal-fired plants to serve as baseload generation for the overall system. According to the U.S. Energy Information Administration (EIA), U.S. electric generating facilities expect to add 26.1 GW of utility-scale generating capacity in 2016. Most of these additions come from three resources: natural gas (8 GW), solar (9.5 GW), and wind (6.8 GW), which together make up almost 93% of total planned additions.

The Navigant Energy Market Outlook has projected this level of expansion in natural gas and renewable assets for several years. For 2016, Navigant expects higher natural gas (16.3 GW) and solar (13.2 GW) expansions than EIA is projecting. Navigant forecasts wind expansion will be lower at 6.1 GW, suffering a bit from extremely low natural gas prices and the ongoing decreases in installed costs for solar (decreasing faster than the installed cost of wind).

This shift toward natural gas and renewables will continue as many different factors affect generation fuel strategies, resource plans, and decision-making. Among these factors are sustained low natural gas prices (see Navigant’s natural gas price forecast), state and federal renewable incentives, the implementation of environmental regulations such as the Mercury and Air Toxics Standard, and the threat of new carbon legislation such as the Clean Power Plan (see also my earlier blog in this series on this topic). Today, this shift is accelerating even more because of increased interest from customers in renewable power (customer choice) and the rapidly declining installed costs, which are making renewables more competitive with traditional fuel sources (including coal and nuclear).

What Does This Mean to Generators?

As a result, the economics have changed and some of the existing (coal and nuclear) assets are experiencing eroded profit margins. These margins, in turn, are resulting in challenging economics and, in some cases, significant devaluation. Increasingly more generation assets are at risk of becoming stranded investments, as the fuel mix is shifting more quickly than anybody envisioned. Coal-to-gas switching has caused coal plants to consider retirements and, with low gas prices and the impact of renewables off peak, there is more pressure to decommission nuclear assets. There have been several early shutdowns, confirmed announcements, and threatened early shutdowns in recent years, including the recommendation from Omaha Public Power District (OPPD) management last week to discontinue operations at its Fort Calhoun nuclear station. Generators are reevaluating the role of each of their plants, as well as how and if the plants should fit into their portfolio, leading us to the following observations:

  1. Coal and nuclear plants operate at reduced revenue while still required to maintain system reliability/stability as long as their required economics are met.
  2. Coal plants (designed as baseload) are required to operate more as cycling units. This requirement drives up cost and reduces efficiencies, which may mitigate some of the environmental gains made as a result of more off-design operations.
  3. These economic pressures are driving numerous coal plants out of the market and increasing the possibility of stranded assets.
  4. Nuclear assets have been hurt as well and are requesting market assistance and incentives to keep operating. Savings measures such as Capacity Resource Adequacy payments and even state legislatures have been looking at approaches that can improve the economics for both nuclear and coal in order to maintain fuel diversity and keep these baseload plants running.
  5. Efficient gas plants are operating more in areas of ample gas supply and infrastructure.
  6. All generating plants are seeking ways to reduce operations and maintenance (O&M) costs while maintaining reliability.

As evidenced by Navigant’s Generation Knowledge Service (GKS), the average capacity factor of coal plants has declined by 20%-30%, which translates to a 20%-30% drop in gross revenue opportunity. Very few companies can easily adapt to this type of drop in gross revenue. At the same time, driven largely by increasing amounts of variable renewable generation, these coal plants have been asked to perform more as cycling plants, which drives up overall operating costs and reduces efficiency. To deal with the combination of lower realized revenue and higher operating costs, companies are evaluating their plants to determine if they can survive in the new world or if they should be repowered or retired. They are actively seeking new ways to reduce costs through fewer planned outages and higher operating efficiencies while maintaining high reliability to support the increased use of variable generation.

And to Make Things Worse: The Move from Big to Small Power

Additionally, with the rapid growth of distributed generation (DG), all central generation (coal, gas, nuclear, and wind) will face more changes in their role on the grid. DG installations are expected to reach 19 GW in 2016; thus, DG is growing faster than central station generation (26.1 GW additions, minus 7.9 GW retirements, using the referenced EIA forecast). On a 5-year basis (2015-2019), DG in the United States, with some variance by region, will grow almost twice as fast as central generation (98.4 GW vs. 57 GW).

Path Forward

As a path forward, generators must clearly define the mission of each generating unit to understand their new role and how to survive economically. To succeed, companies must do the following:

  1. Conduct a strategic review of generating assets and determine what, if any, changes need to be made in generation portfolio and/or in how these assets are managed under several regulatory and commodity pricing scenarios.
  2. Find ways to reduce O&M costs while maintaining the reliability required by the independent system operators during target operating periods (for plants that will continue to run in the near term).
  3. Have a strategy to manage significant reductions in staffing levels and loss of critical experience across the board, including dealing with the impacts on funding pensions and local economies when plants are retired.
  4. Plan for a changing workforce that will need to include deeper knowledge of digital technology and an understanding of how to optimize operations in a more variable power market.
  5. Aim to operate fossil assets globally, as companies that do so may find it easier to survive than generators focused solely on North America or Western Europe.
  6. Seek new sources of revenue to replace the capital-intensive position for large generating plants by considering investments in renewables and distributed energy resources.

An understanding of the above data points and how they affect your company and the rest of the industry is crucial to shaping our energy future. Navigant can help you develop and use this information to influence the key decision makers, regional transmission organizations, and state agencies that are shaping the future of the industry. If you’re not sitting at the dinner table shaping a future that works best for your company and your customers, then you just might be the entrée.

This post is the fourth in a series in which I will discuss each of the megatrends and the impacts (“so what?”) in more detail. My next blog will be about delivering shareholder value through mergers and acquisitions. Stay tuned.

Learn more about our clients, projects, solution offerings, and team at Navigant Energy Practice Overview.

 

What Does El Niño Mean for the Energy Industry?

— November 6, 2015

One of the strongest El Niño climate patterns in the past 50 years is active and causing irregular weather patterns globally. El Niño is characterized by above-average ocean temperatures in the eastern and central equatorial Pacific Ocean. The weather pattern began to develop in March 2015 and is expected to peak between December 2015 and April 2016, when the equatorial Pacific Ocean temperatures are warmest. What sort of impact will El Niño have on various sectors of the energy industry as it begins to peak?

Reduced Natural Gas Demand

Temperatures are expected to be above-average during the winter in large areas of the Northern Hemisphere as a result of El Niño. In terms of natural gas (NG), the three largest consumers are the United States, Russia, and China. North America tends to see greater increases in temperature during an El Niño event when compared to Asia, but both areas are forecast to have a warmer-than-average winter in significant NG heated areas. In much of the Midwestern and Northeastern regions of the United States—areas that tend to have the strongest demand for NG—a warmer winter is expected. While much of the Southern United States may see slightly colder weather, this will not cause a significant increase in NG demand. Overall, decreased NG demand does not bode well for an already decimated NG market. Inventories for NG are expected to reach all-time highs this winter.

Less Wind Energy

According to the U.S. Energy Information Administration, wind power generation fell 6% during the first half of 2015, despite an increase in wind generation capacity of 9%. The forecast shows more of the same until the spring of 2016, with wind power producing over 4% of electricity generation nationwide. Wind farms have been operating near one-third of capacity so far in 2015 and should expect more of the same through early 2016.

Increased Hydroelectric

El Niño leads to heavy rains and snow along the western coast of the Americas. While this can provide some drought relief, flooding also becomes a major concern. For markets that generate significant electricity from hydroelectric dams, the increased moisture and snow pack from El Niño are a welcome sight.

Potential Reduction in Crops for Biofuels

Palm oil is a primary feedstock for biodiesel production. Over 85% of the world’s palm oil exports are produced in Malaysia and Indonesia. For Southeast Asia, El Niño means warmer, drier weather. This can lead to drought and increased fires in the Indonesian peatlands. Haze from the fires stunts fruit growth and palm oil production. While palm oil is only one of several sources of vegetable oil used in biodiesel production, increased prices of palm oil may lead to higher production prices for biodiesels. Although the fires in Indonesia have some impact on biofuels prices, it is having a much more significant toll on greenhouse gas emissions and air quality across Asia.

 

Oil Prices Cut Drilling Sector Sharply

— September 17, 2015

Oil drilling rig numbers in the United States have been declining rapidly, down about 57% from a year ago. The total count was 675 as of last week, up one from the week before. This marks the sixth week that rigs have been added by domestic oil drillers, although the numbers are still far lower than they were at this time last year, when the total number of oil rigs sat at 1,575. The rig count is approaching historic lows: the highest historical rig count was 4,530 in 1981; the lowest was 488 in 1999.

The total quantity of oil produced has not decreased nearly as rapidly as the number of rigs. Due to technology advances and greater efficiency, each rig has been yielding more oil production on average. Additionally, fewer rigs are being shut down in the most productive regions—the Bakken, Eagle Ford, and Permian plays. The U.S. Energy Information Administration estimated a decline of 100,000 barrels per day from June to July. This brought production in June to 9.3 million barrels a day. Overproduction in a tepid marketplace leads to further declines in the price of crude oil.

A Double-Edged Sword

The decline in drill rigs is related to declines in the price of crude oil, which has fallen from $98.15 in August 2014 to $45.63 a year later. Despite the obvious decline in drilling sector jobs, there are benefits to the declining numbers of rigs. Drilling rigs tend to use a lot of fuel, and quite often diesel. Recent regulations proposed by the U.S. Environmental Protection Agency limit the emissions produced by a diesel rig, but the real impact on emissions comes from the declining numbers of engines using the fuel. The decline in diesel use has enormous benefits for other sectors of the economy, including a surplus of diesel fuel to be used for agricultural purposes. Consumers in the United States are experiencing lower retail costs for gasoline and heating oil; worldwide, importing countries are also experiencing economic growth due to the lower cost of oil. Yet, the stronger U.S. dollar prevents this growth from being as dramatic as that in the States. Lowered oil prices are positively affecting many oil-importing countries, while negatively affecting the exporters.

Globally, it appears that the fall in oil prices should have a positive impact. Drastic declines in the price of oil tend to shift extra income to consumers, driving global economic boosts. According to The Moscow Times, whenever the price of oil is halved (as evidenced in recent years 1982–1983, 1985–1986, 1992–1993, 1997–1998, and 2001–2002), it is followed by rapid global growth. The inverse is also accurate, with rising oil prices preceding every global recession in the past 50 years. If trends hold true, the current decline in oil prices could lead to greater economic well-being around the world.

Last week, oil prices began to increase gradually, but a 3-day uptick was followed by a $2.10 fall to $47.10 a barrel. This still marks an increase from the $39.57 price of August 26. Perhaps the decline in oil drilling rig counts will not persist so very long, after all.

 

Reserve Margins Undermined by Climate Change in the West

— June 10, 2015

A recent Arizona State University report has found that estimated reserve margins across the Western states will be far lower than previous estimates suggest. Reserve margins are a measure of available generation capacity over and above the capacity needed to meet normal peak demand levels. Regulatory bodies usually require producers and transmission facilities to maintain a constant reserve margin of 10% to 20% of normal capacity as insurance against breakdowns across the system or sudden increases in energy demand.

The study, which looks at power delivery over the next 50 years for the 14 Western states served by the Western Electricity Coordinating Council (WECC), found that extreme heat events and drought are occurring with greater frequency and duration, putting a significant strain on installed and planned generation capacity.  According to estimates published in the study, power providers may be overestimating planning reserve margins by as much as 20% to 25%.

For a system designed to deliver safe, affordable, and reliable power, this is a problem. Power providers do not currently account for climate change impacts in their operations, which could leave utilities and grid operators more exposed to unforeseen weather events than previously thought.

Varied Impacts

According to the study, forecasts about the impact on specific generation sources vary. Baseload nuclear and coal power plant capacity would be most impacted by reduced cooling water during the hottest days. Reduced stream flow would is also expected to reduce hydroelectric capacity in drier regions, but increased precipitation, particularly in the Pacific Northwest, could temper these losses. Although, combustion turbines – fueled by natural gas or renewable natural gas (RNG) in some cases – and solar PV lose output as air temperate rises, the impact on solar PV capacity is expected to be negligible. The researchers also concluded that potential changes in wind speed and air density would not have a major impact on wind generation capacity.

The study points to increased momentum behind the power grid becoming more distributed and dynamic. Not only are solar PV, energy efficiency, and other distributed energy resources (DER) a powerful tool for reducing greenhouse gas emissions across the grid, with the emergence of the energy cloud, they will help utilities and grid operators deliver on their obligation to provide safe, affordable, and reliable power.

A Way Forward

Increased penetration of DER also reduces the impact of line loss, a key issue across the West. As bulk high-voltage power cable shoulders the burden of moving capacity from remote areas to population centers dispersed across the expansive Western region, aging high-voltage power cables are prone to expansion and sagging, causing more resistance across the system and requiring increasing levels of generation. Severe heat events could exacerbate the situation further, eventually posing a threat to public safety.

Although the Arizona State University study is worrisome, many of the innovations and tools necessary to mitigate the impact of climate change on the grid are available today. Efforts by the U.S. Environmental Protection Agency to regulate carbon emissions in the power sector through the Clean Power Plan (CPP) are expected to force utilities and regulators to shift the generation mix away from heavily polluting generation sources, which would help insulate the WECC region from the impact of severe heat and drought.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Finance & Investing, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Transportation Program, Transportation Efficiencies, Utility Innovations

By Author


{"userID":"","pageName":"Natural Gas","path":"\/tag\/natural-gas","date":"5\/29\/2016"}