Navigant Research Blog

Startups Mine Traffic Data to Drive City Efficiency

— November 2, 2016

Connected VehiclesThe traffic jam. It frustrates commuters, causes huge losses in productivity, and negatively affects air quality. This aggravating problem (and the often futile attempts to prevent it) dates back to the horse and buggy, and startups are now creating innovative analytics to better understand the causes of jams and developing services to increase the flow of vehicles.

Examining Intersections

RSM Traffic, based in Dublin, Ireland, focuses on collecting data from intersections within a city to enhance the effectiveness of traffic light timing. The company’s Simon platform analyzes the sensor data located at multiple intersections to create a network to better understand the interaction of traffic flows across locations.

Kathryn Mullins, Head of Strategic Partnerships at RSM, said the company uses radar to study the flow of vehicles, and its open software application programming interface (API) is data agnostic, enabling data collection from other sources such as city data repositories. Mullins said RSM’s target audience includes cities, commercial property owners, and media companies looking to get better data on the traffic flow around outdoor advertisements. RSM said Simon is not currently using data received from vehicle telematics systems, but the platform has the capability to accept data via dedicated short-range communications (DSRC), which would provide additional granularity in understanding driving routes.

Navigation Analysis

San Francisco, home to some of the worst traffic conditions in the United States, is also home to StreetLight Data. Founder and CEO Laura Schewel said the company uses data from relationships with in-car navigation system providers and mobile phone applications to understand the location and length of driving trips. Schewel said the company has anonymized data from millions of vehicles, which has been used to support nearly 200 transportation projects.

StreetLight Data aggregates location data on the origin and destination of trips, enabling retailers or city managers to understand where vehicles come from and where they go next. The mobile phone data is analyzed for the time and distance traveled in order to differentiate between driving and other trips such as biking or walking, according to Schewel. In October, the company announced a deal to integrate its Travel Metrics service into products from transportation modeling and forecasting software provider PTV Group.

StreetLight Data’s services are delivered via a web portal and has particular applications for the plug-in electric vehicle (PEV) market. Commercial property owners, charging networks, or utilities looking to find locations where PEV traffic is sufficiently dense can use StreetLight Data’s information to optimize the siting of charging infrastructure. The company can analyze trip data to find locations where PEV drivers are likely to need a charge based on where they live and common distances driven.

While the term big data may seem Orwellian to some, services like RSM Traffic and StreetLight Data will play a significant role in enabling smart cities to be safer and more livable by increasing the traffic flow and enabling the growth of emissions-free PEVs.


Could On-Demand Mobility Finally Pave the Way for Vehicle-to-Grid Integration?

— September 27, 2016

EV RefuelingA decade ago, when discussion of modern plug-in electric vehicles (PEVs) was just getting ramped up again, one of the big potential selling points was the concept of vehicle-to-grid (V2G) integration. For a variety of reasons, it never quite caught on. However, as automakers, suppliers, and a variety of service providers have made a flurry of announcements about deploying autonomous vehicles into ride-hailing services in recent weeks, the time may also have arrived for V2G.

The idea behind V2G was to enable two-way communications and power delivery between PEVs and charging outlets. In addition to electricity flowing into the vehicles’ batteries to enable mobility, PEVs could also provide power back to the grid when needed to cover peak demand loads. A number of automakers have worked with utilities over the years to test out the concept, including Ford. When the automaker built a fleet of 20 prototype Escape plug-in hybrids for field testing in 2008, the cars were loaned out mostly to utilities to evaluate V2G.

Benefits of V2G

For customers, potential benefits of participating in a V2G system include possible rebates for contributing power back to the grid or discounts on charging during off-peak times. Utilities using V2G would have access to a buffer of power during load spikes that would reduce the need to build out extra generating capacity.

Unfortunately, sales of PEVs have turned out to be far lower than many projected a decade ago, with fewer than 120,000 sold in 2015. At the same time, there are more than 3,300 electric utilities in the United States, all with different (and incompatible) systems. With relatively few PEV owners, many with low-range battery EVs, there wasn’t a huge demand for V2G from consumers concerned about being left with insufficient range when they needed their vehicles.

Enter the era of autonomous on-demand mobility (AMOD). Navigant Research’s Transportation Outlook: 2025-2050 report projects that as the world becomes increasingly urbanized and crowded in the next 3 decades, there will be a push toward AMOD to solve the combined problems of air quality, safety, and urban congestion. Most if not all of the autonomous vehicles used to provide these services are also expected to be electric.

New Business Models

Large fleets of more standardized EVs should ease some of the technical issues involved with V2G and could provide the critical mass of fleet size needed to make the investment worthwhile for both utilities and fleet operators. By taking individual owners out of the equation, the fleet management system could cycle some percentage of these autonomous vehicles through V2G-enabled charging stations during the peak hours of electricity demand to provide the needed buffer.

In a world of dramatically reduced retail vehicle sales and the possibility of automakers running these mobility services, such a scheme could also be beneficial to today’s auto dealers. Those dealers could turn their focus to providing maintenance services for fleets, and while vehicles are onsite, they could participate in the V2G system. If utilities were to share part of the savings from not having to expand generation capacity with these mobility and service providers, it would contribute to a new revenue model. As the transportation ecosystem transforms in the coming decades, everyone in the supply chain will need to look at innovative approaches to building a sustainable business.


Utilities Rightly Taking Larger Role in EVs

— July 11, 2016

EV RefuelingWithin the span of a few short years, utilities have transitioned from being bystanders to becoming active participants in supporting the rollout of plug-in electric vehicles (PEVs). Legislators and utility commissioners have evolved their view of the roles that utilities can and should play, particularly in incentivizing or operating electric vehicle (EV) charging infrastructure.

A few years ago, several states, including California, prohibited utility ownership of EV charging infrastructure. Today, utilities are not only encouraged to operate charging stations, but are also compelled to do so. Public utility commissions have recognized that switching from gasoline to renewably powered electricity for transportation is good for air quality and the local economy, and many have updated their rules to allow utility participation.

Since direct current (DC) fast charging (with power delivered at 50 kW-100 kW or higher) has the potential to affect grid operations, many utilities are focusing on ownership of these assets. For example, Hydro-Québec is expanding its Electric Circuit of fast chargers along Highway 20 in the province of Quebec in Canada. Meanwhile, AGL Energy is offering a flat $1 daily fee for unlimited residential EV charging in Australia.

Change on a Global Scale

This is truly a global phenomenon. My recent travels have taken me to Honolulu, Munich, and Dubai—all of which have EV charging stations operated by utilities. In Hawaii, utility Hawaiian Electric Co. (HECO) is embracing PEVs as a method of helping to balance the power grid in the state. Hawaii has an ambitious goal of moving to 100% renewable power generation by 2045.

In many cases, PEVs are good load additions, as vehicle charging can be timed to balance intermittent solar and wind power production. Utilities are also launching pilots where PEVs are enrolled in demand response programs, as Pacific Gas and Electric (PG&E) and BMW are doing in Northern California. The new load from PEVs can help utilities replace revenue lost to the myriad of energy efficiency programs that are flattening or reducing power consumption. PEVs will also become more frequently accessed as part of the growing use of distributed energy resources (DER).

Navigant Research will discuss the many opportunities for utilities to derive value from using PEVs in demand response, as DER, and for load shifting and other ancillary services during a webinar on July 12.


Tesla and SolarCity: Is Financing a Bundled Clean Energy and Transportation Service on the Horizon?

— July 8, 2016

Electric Vehicle 2Tesla’s recent announcement that it intends to acquire SolarCity was an unprecedented Energy Cloud trifecta. It’s not easy for a single release by one company to stir the interests of three separate sets of passionate stakeholders tracking transformative clean energy and transportation technologies and business models. And rightly so, as the potential for Tesla to pair vehicle electrification with solar and advanced battery energy storage as integrated distributed energy resources (DER) is an eye-opener to say the least.

Tesla’s vehicle and battery manufacturing businesses are very different than SolarCity’s solar business, both technically and revenue model-wise. It will likely be a challenge for the company to explain these separate businesses to its investors and manage expectations. One could argue that Tesla might be better off focusing 100% of its efforts on building out the Model 3 and Nevada Gigafactory battery manufacturing capacities in the short term.

The DER Standpoint

But from a DER technical standpoint, it’s intriguing to consider the possibility of what the new Tesla could do. For example, the new Tesla could couple the energy capacity of plug-in electric vehicle (PEV) batteries with solar, PEV charging infrastructure, and virtual power plant (VPP) software all at the home of a single customer. It’s not hard to envision how this type of arrangement could serve both as DER and an overnight revenue source to utilities. The new Tesla indicated that it plans to continue to partner with utilities, which are increasingly interested in aggregated behind-the-meter demand response capacity. And SolarCity’s recent efforts to partner with utilities in New York on a new program to eliminate net metering along with the company’s recent hiring of former Federal Energy Regulatory Commission (FERC) Chairman Jon Wellinghoff as Chief Policy Officer demonstrates a willingness to pursue such new and innovative business models.

Going to Market

But how might the new Tesla take this sort of concept to market? A key aspect of technology innovation in renewable energy has been financing innovation. The development of power purchase agreement financing has been instrumental in the growth of solar PV. Navigant Research believes that financing innovation will also drive energy storage markets over time, as well.

But the new Tesla could be uniquely positioned to apply financing innovation to an integrated solar battery PEV-based VPP while also providing consumers with the use of the vehicle. Imagine a homeowner entering into a 15-year financing agreement for solar, energy storage, and use of a Tesla Model 3 under a single contract. In this scenario, the new Tesla/utility partner manages the VPP asset while the customer gets access to, but not ownership of, a Tesla Model 3. If the new Tesla/utility partner decides to extensively use a Model 3 battery as part of the VPP, then the homeowners get a new Tesla battery. In this scenario, the long-term assumptions on VPP revenue, replacement batteries, or even new vehicles and solar storage benefits are bundled under one customer-facing agreement.

This type of integrated financing innovation might sound challenging. But I can guarantee that a trifecta (or more) of interested Navigant Research teams will be closely tracking if and how the new Tesla comes together.


Blog Articles

Most Recent

By Date


Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author

{"userID":"","pageName":"Plug-In EVs","path":"\/tag\/plug-in-evs?page=3","date":"2\/23\/2018"}