Navigant Research Blog

How Building Innovations Can Help the United States and China Tackle Climate Change

— November 17, 2014

Under the terms of the U.S.-China Joint Announcement on Climate Change, China has agreed for the first time to set a limit on the rise of its greenhouse gas (GHG) emissions.  As the two biggest economies in the world, the United States and China have the ultimate responsibility for leadership in tackling climate change.  The next big hurdle is driving emissions downward.  Federal regulation on climate change in the United States has been at a standstill, but elements of this agreement shed light on opportunities to reduce emissions while stimulating the economy.

We know buildings demand about 40% of all energy used in the United States, and there is a lot of room for improvement in how we live and work in buildings.  In China, the opportunities to tackle inefficient building operations are just beginning to unfold.  In fact, China’s State Council Development Research Center projects that energy efficiency in buildings could provide 25% of China’s new power needs by 2020.  The central government projects that, by 2020, 60% of the population will be urbanized and more than 1 trillion square feet of new commercial and public buildings will be added to the country’s building stock (learn more from Navigant Research’s reports, Energy Efficient Buildings Asia Pacific and Smart Cities).

Measure, Monitor, Manage, and Mitigate

As the saying goes: you can’t manage what you don’t measure.  The first big benefit of smart building technologies is insight into how your facility is operating.  In order to make improvements, you must have a baseline.  Recognizing this challenge, cities across the United States (including New York City, Seattle, and Chicago) have passed building benchmarking laws to start a new wave of energy awareness.  A wide array of smart building solutions is available to help building owners track their energy use to meet these new demands.

Smart buildings are defined by integrated and dynamic systems.  From the innovators in building energy management systems (as detailed in Navigant Research’s Leaderboard Report: Building Energy Management Systems) to advanced wireless controls for smart buildings, technology is helping building operators and decision makers shift their operations to new schemes for continuous improvement.  Smart building solutions redesign the processes for monitoring and managing systems from heating, ventilation, and air conditioning to plug loads, and in doing so, provide new ways to mitigate GHG emissions from building operations.

The development of smart buildings should be a keystone in the collaboration and innovation targets of the U.S.-China Climate Agreement, because the enabling technologies not only dramatically reduce energy consumption and GHG emissions, but make real economic sense.

 

Smart Building Startups Continue to Flourish

— November 17, 2014

Like the “Harvard of the [insert region here],” “the Next Silicon Valley” is a term so trite that it has become meaningless.  You may have heard of the Silicon Hills, the Silicon Strip, Silicon Wadi, or even the Silicon Valley of the East.  It seems that anyone with a pulse is trying to woo tech entrepreneurs into the next Silicon cluster.  Nevertheless, tech activity is not limited to Northern California.  A recent analysis by the Financial Times found that 60% of “unicorns” (tech startups that reach a $1 billion valuation) were created outside of California’s Bay Area.

Indeed, many local governments are trying to establish startup ecosystems to rival Silicon Valley, including the government of Washington, D.C.  Recently, Mayor Vince Gray announced the awarding of grants to tech startups totaling over $800,000.  Several of these companies represent the wave of innovation occurring in smart buildings.  Aquicore, a real-time energy management software for commercial real estate and industrial facilities, received $122,500.  And Azert, the developer of Smart(er) Socket, wall sockets integrated with Apple’s iBeacon technology and Wi-Fi, also received $122,500.

Other People’s Stuff

It might seem strange to think of wall sockets communicating, and even stranger to think of any building infrastructure using an Apple technology.  What’s more, the idea of a software startup that relies entirely on building controls hardware made and installed by other vendors was until recently unthinkable.  In the past, building systems were specifically designed not to work with other vendors’ products in order to ensure a long-term market for replacements and upgrades.  But the convergence of building technology and information technology, the adoption of open protocols, and greater integration between building automation systems have lowered the barriers to entry in the smart building market.

These startups demonstrate that the competitive landscape of smart buildings is changing.  It’s easier than ever to get building data, meaning that a wider pool of competitors are emerging.  What’s striking, and hopefully indicative of future trends, is that these companies are springing up in Washington, D.C., away from the established tech hub of Silicon Valley and away from established global building controls manufacturers.  Future innovation in smart buildings can be driven by anyone, anywhere.

 

South Korea Draws an Ambitious Roadmap for Smart Grids and Smart Cities

— November 12, 2014

South Korea has ambitions to be a world leader in smart grid technology.  The smart grid test bed on Jeju Island has been the proving ground for the technologies, partnerships, and business models required to achieve this goal.  Led by Korea Electric Power Corporation (KEPCO), South Korea’s national power company, the Jeju Island demonstration project involved a wide range of South Korean and international partners.  The project ran from December 2009 until May 2013, had a total budget of around $240 million, and included two substations, four distribution lines, and 6,000 households.  The sub-projects included power grid upgrades, demand response, electric vehicles (EVs), renewable power integration, and new energy market models.

In this regard, Jeju Island mirrors many other smart grid pilots around the world looking at the integration of multiple technologies and new business models, particularly island community smart grid projects such those in Hawaii and Bornholm.

From Islands to Cities

South Korea is different in that the government has now laid out plans to move beyond its initial demonstration project into a wider series of trials and eventually a national rollout of smart grid technologies.  The next phase will involve a series of eight smart grid/smart community projects, to be run between 2015 and 2017.  More impressively, KEPCO has laid out plans to extend these projects into a series of municipal-scale smart grids by 2020.  The final stage of this grand scheme will see smart grid technologies deployed across the whole country by 2030.

The total budget for the pilot projects is $876 million, around $400 million of which will come from central and local governments and the rest from the private sector.  KEPCO alone is investing $155 million.  The government expects the private sector to take the lead in further development from 2018 onward.  As well as smart meters, an EV charging infrastructure, and energy storage, KEPCO is piloting a smart grid station that will provide sophisticated energy management and grid integration for commercial buildings, beginning with up to 220 KEPCO buildings.  It sees these smart grid stations as building blocks for community energy management systems and city-scale energy management.

Big City Vision

These are ambitious plans, and some of the Korean experts I spoke at Korea Smart Grid Week were skeptical about the ability of the government, KEPCO, and other stakeholders to meet the proposed timescales.  However, even if those timescales prove challenging, the vision and the roadmap are impressive.  I don’t know of any other country that has laid out a plan of this magnitude that would see smart grid technologies deployed across all of its major cities by 2020.  Such an achievement really would mark South Korea out as a world leader in both smart grid and smart city infrastructure.

 

Wireless Power Promises New Capabilities for Smart Buildings

— November 11, 2014

Power_Paddle_webIn the science fiction universe, transmitting power over great distances is remarkably easy.  A shield generator could be placed on, say, the forest moon of Endor and beam its power to an orbiting space station.  Lamentably, in the real world, such extensive wireless power transfer remains elusive.  But, 2015 is poised to be a pivotal year in wireless power.

Current wireless power solutions focus on charging mobile phones and electric vehicles, and both are gaining momentum.  On the mobile phone front, the first commercially available products based on the Alliance for Wireless Power’s Rezense standard will soon hit the market, while the Wireless Power Consortium’s competing Qi standard continues to expand around the globe.

In the auto industry, wireless technology represents the future of plug-in electric vehicles and could be a factory option as early as 2017.

Smart Building Applications

The promise of wireless power extends beyond these early adopter markets — particularly in smart buildings.  The proliferation of the Internet of Things in buildings is currently hindered by limitations in power and communication capabilities.  University of Washington professors Joshua Smith and Shyam Gollakota have an innovative approach to tackling both problems wirelessly.  The two have started Jiva Wireless to develop the solution and plan on taking a leave of absence in 2015 to focus on bringing products to market as early as 2016.

Their approach is to harvest ambient energy in the form of Wi-Fi, TV, and cellular transitions.  As detailed in Navigant Research’s report, Energy Harvesting, these types of systems are already gaining traction in a variety of applications.  What’s novel about the Jiva Wireless approach is the use of ambient backscatter communication, which selectively absorbs and reflects radio frequency (RF) signals, effectively combining power and communication into one function.

Landscape Without Wires

The launch of Jiva Wireless adds to an already crowded field of wireless power solutions.  Many of these solutions, as promising as they may be, have yet to make it to the real world.   Funding of these companies does not appear to be a challenge, though.  Energous, a company developing a wireless power solution using radio waves, raised $24 million in an initial public offering in March, despite not having a commercially available product.  Similarly, uBeam, which has a prototype that uses ultrasonic waves to transfer power, just received $10 million in Series A funding, bringing the total amount of capital raised to $12 million.

Wireless power incumbents are shifting, as well.  Duracell, an early adopter of wireless charging for mobile electronics and the pioneer of Powermat technology, is being split from its parent company, Proctor & Gamble, as part of a strategy of divesting non-core businesses.  Meanwhile, JVIS and d-Wired are attempting to resurrect conductive wireless charging by licensing intellectual property from FliCharge.  The shifting landscape of wireless power providers indicates an interesting road ahead in 2015.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Smart Buildings Program","path":"\/tag\/smart-buildings-program","date":"11\/26\/2014"}