Navigant Research Blog

Rembrandt, In a New Light

— April 23, 2013

After an extensive 10-year renovation, the Rijksmuseum in Amsterdam reopened its doors earlier this month to visitors coming to see the work of Dutch masters such as Rembrandt and Vermeer.  In addition to the 17th century masterpieces, those visitors will also be treated to a marvel of the 21st century: LED lighting.  Three-quarters of a million LEDs from Philips now light the museum’s 7,500 works of art and over 100,000 square feet of space.   The Rijksmuseum is joining a rapidly growing number of art museums that have already switched to this light source, including the Louvre in Paris, France, the Kunstkammer Wien in Vienna, Austria, the De An Art Gallery in Zhongshan City, China, and the Museum of Fine Arts in Houston, Texas.  There is even a newly created LinkedIn group focused on LED lighting for art and museums.

When choosing a light source, the two primary considerations for any art museum are the visitor experience and the preservation of artwork.  For both of these considerations, LED lighting is the clear frontrunner.  Light quality and color rendering from LEDs have advanced to a point where Tim Zeedijk, the head of exhibitions at the Rijksmuseum, said that the recent lighting upgrade “allows the art to be viewed in the best light possible to bring out all the colors and details that the artist intended us to see.”

Applications Expand

Regarding artwork preservation, reducing the exposure to ultraviolet light is a key strategy.  Fluorescent, halogen, and high-intensity discharge lighting all emit UV light, forcing art museums to use filters and limit the amount of time that any individual piece is on display.  LED lighting, on the other hand, emits no UV light, relieving a significant concern for curators and giving them new flexibility.  All of the other benefits of LED lighting also apply to museums, including reduced electricity consumption and longer-lived lamps.

Art museums provide another example of a specific application where LED lighting is already the best choice.  Others include cold storage facilities, where the efficiency benefits of LEDs are doubled by the savings in cooling energy, and high-ceiling atriums where the cost of replacing burned out lamps is exorbitant.  As the quality of LEDs continues to improve and the price of LEDs continues to fall, the list of applications where LED lighting is the best choice will continue to grow.  This combination of factors has led Navigant Research to forecast that unit sales of LED lamps will increase worldwide at a compound annual growth rate (CAGR) of 44%, as reported in our recently released study, Energy Efficient Lighting for Commercial Markets.

 

Wireless Building Controls Standards Emerge

— April 17, 2013

Wireless communications for building control systems have been available for more than a decade.  However, these product lines – focused on specific single building system (lighting, HVAC, etc.) – have achieved acceptance only in small market niches.  Wireless controls have always had what seemed to be a strong business case: reduced labor costs thanks to less wire pulling, more flexible sensor placement, and the ability to adapt as building interiors are rearranged over time.  In practice, however, these benefits were offset by the initial costs, lack of training, and often poor performance characteristics of the proprietary, non-standard market offerings.

This is changing rapidly, as two particular wireless controls standards have emerged with strong multivendor support:  ZigBee Commercial Building Automation (ZBA) and EnOcean.   Our recently published report, Wireless Control Systems for Smart Buildings, forecasts that these two standards will battle each other for share in a growing global market.   Interestingly, these two successful standards evolved from very different approaches.

Wireless Building Controls Penetration Rate by Region, World Markets: 2012-2020

 

The ZigBee Alliance was founded in 2002 to develop an open standard for wireless sensor networking, with commercial building automation a key application target.  While market attention has focused on an Internet Protocol (IP) version of ZigBee for Smart Energy (i.e., smart meter and home area networks), other groups quietly, steadily, and quite slowly, inched toward a ZigBee implementation for commercial building control systems.  It took more than 10 years and several detours, but the working groups ultimately adapted the popular BACnet building control protocols to the proven ZigBee PRO networking stack to deliver a mesh networking solution that most industry participants are now embracing, including Trane and Schneider Electric, among many others.  Ultimately, a long, multi-vendor effort has produced an acceptable general wireless standard that spans lighting, HVAC, fire & safety, and security & access building controls systems.

The EnOcean specifications have emerged by a completely different path that started from a proprietary single-vendor product set targeting a specific problem; it subsequently opened up to multiple vendors and a broader solution space.  EnOcean GmbH was spun out in 2001 from Siemens AG as a provider of self-powered wireless lighting controls, whereby the energy inherent in physically toggling a light switch is harvested to power wireless communications to the lighting system.  This avoids the battery maintenance problem associated with battery-based wireless switches.   EnOcean the company initiated the creation of an industry alliance, and though the technology has been accepted as a ISO/IEC standard, the underlying technology remains essentially sourced by a single vendor.  Yet, the EnOcean solution has garnered broad industry support and customer acceptance, particularly in Europe – enough to cause the ZigBee Alliance to develop a similar energy harvesting specification.

Despite the very different pedigrees, the stage is set for a battle between ZigBee, EnOcean, and proprietary solutions.  Other standards and semi-standards including Wi-Fi, Z-Wave, and LonWorks will also look for mindshare, but we see these are secondary to the larger battle between ZigBee and EnOcean.  This competition should benefit the consumers of these technologies: building controls vendors, integrators, installers, and ultimately, building occupants.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author


{"userID":"","pageName":"Smart Buildings Program","path":"\/tag\/smart-buildings-program?page=23","date":"2\/23\/2018"}