Navigant Research Blog

Waste-to-Energy Needs New Regulations

— September 18, 2014

A recent study published by the Earth Engineering Center (EEC) of Columbia University estimates that if the total volume of municipal solid waste (MSW) produced in the United States were incinerated in waste-to-energy (WTE) power plants, 12% of the country’s total electricity demand could be met.  This is more than 5 points higher than the current share of U.S. energy demand met by renewable sources today (7%), with WTE representing just a small fraction of the total energy mix.

Just 86 WTE plants are in operation in the United States today.  No new plants have been built since 1995.  Meanwhile, Waste Management recently divested its Wheelabrator Technologies subsidiary, which operates 17 plants around the country.

With so much upside, why does this market continue to stagnate?

Waste Pyramid

The United States currently produces 250 million tons of trash annually across the country.  This represents 15% to 20% of the global total.  Despite an abundance of feedstock, three primary barriers limit market growth: lack of regulatory support, lack of public support, and low electricity rates.

Among these, lack of regulatory support is often cited as the primary barrier to realizing the market’s full potential.  Across the United States, for example, landfilling continues to be the de facto solution for disposing of MSW, with relatively few exceptions.  On average, about 11% of the MSW is diverted to WTE and around 35% is recycled or composted.  The remainder (54%) is landfilled.  This reflects a waste management regulatory regime in the United States that falls well short of more aggressive policies set forth by European policymakers.

European principles articulated under a waste management hierarchy pyramid framework provide strong support for WTE and energy recovery.  A combination of land constraints, higher electricity prices, and a perilous dependence on Russian natural gas have provided European policymakers the motivation needed to enact strong support for WTE and other energy conversion technologies.  Combined with higher tipping fees – the cost of disposing of waste – these policies help reduce dependence on landfills.

Plenty of Fuel

By contrast, waste management in the United States is not coordinated at the federal level.  Instead, policy implementation is left to state discretion.  Individual states – Connecticut, Maine, Massachusetts, Minnesota, and New Hampshire among the leaders – have been far more aggressive in investing in infrastructure to boost recycling and energy recovery from MSW, but these policies have not yet found broad support across the rest of the country.

Recent market developments in the United States, however, signal a likely pendulum shift in favor of WTE and other waste conversion technologies.

In anticipation of tightening restrictions around coal-based generation from the U.S. Environmental Protection Agency (EPA), utilities and state policymakers are actively seeking alternative sources of energy that provide the coveted baseload capabilities of centralized fossil plants.  Among baseload renewables, WTE is among the few options logistically feasible across the country, with MSW generated in abundance and continuously in areas of high population density.

Meanwhile, according to findings in Navigant Research’s Smart Waste report, the traditional waste management market is facing a disruption similar to that faced by electric utilities at the hands of distributed generation.  Although these solutions seek to turn a liability (trash) into a strategic resource, WTE and other energy conversion technologies will benefit from greater emphasis placed on the value of waste as an input for renewable energy generation.

We expect energy recovery solutions to generate 70% of the revenue attributable to next-generation waste management technologies in North America.  While this represents a healthy growth opportunity, it’s just the tip of the iceberg, as the EEC study demonstrates.

 

Distributed Generation Leads Microgrid Investment Opportunities

— September 18, 2014

Without some form of distributed generation (DG), the vast majority of microgrids would not exist.  So, it should come as no surprise that such assets represent the single most lucrative microgrid enabling technologies (MET) segment today.

A prime mover technology for microgrids is diesel generators, which are widely deployed as back-up emergency power generators thanks to their ability for black start.  However, they are also often legacy assets upon which microgrids are layered and, more often than not, microgrids are specifically designed to reduce diesel fuel consumption.

In Navigant Research’s report, Microgrid Enabling Technologies, the amount of DG being deployed within microgrids is forecast in terms of capacity and of annual vendor revenue.  If one looks at new capacity additions, diesel generators have captured the largest market share, followed closely behind by natural gas generators (which also serve as the basis for combined heat and power applications.)

DG Capacity Market Share in Microgrids: 2014

 

(Source: Navigant Research)

An important caveat on these estimates: Only systems that incorporate some level of renewables are included in the tally for remote microgrids.   If one were to include all diesel generators deployed cumulatively, Navigant Research’s data suggests that they would represent more than 65% of total microgrid DG capacity.

Decline of Diesel

Another key assumption moving forward with microgrids is that new diesel capacity will decline over time, given the high cost of fuel, tightening air quality regulations, and the emergence of new power electronics technologies, lessening the need for a fossil prime mover.

While fossil DG capacity is still expected to exceed that of renewable capacity deployed within microgrids in 2014, the higher capital cost attached to solar PV, wind, hydroelectric, and biomass translates into higher vendor revenue per megawatt.  Fossil fuel DG (diesel and natural gas generators plus fuel cells) is expected to represent 58% of total DG capacity in 2014, according to our forecasts; renewables will most likely capture the other 42% of the DG market.   On a revenue basis, however, renewables are expected to capture 23% of total MET vendor revenue in 2014, compared to only 9% for fossil fuel DG.

Notably, the largest category of revenue in 2014 is technologies not actually included in the forecast, since they cannot be quantified on the basis of generation capacity (i.e. smart meters, smart switches, and other distribution or building infrastructure).  The majority of microgrids being deployed today incorporate significant amounts of legacy DG.  (Most of the community microgrids under development in New York and Connecticut add no or very little DG capacity.)  As a result, large investments into integration hardware – distribution infrastructure that cannot be quantified on the basis of generation capacity – represents a large piece of the overall investment pie for these retrofit microgrid projects. But this category is likely to decline as an overall percentage of total vendor revenues by 2023, as renewables, energy storage, and software increase in market share over time.

 

Distributed Biogas Gains Footing in Revised Standard

— September 8, 2014

In July, the U.S. Environmental Protection Agency (EPA) finalized an extension of the beleaguered Renewable Fuel Standard (RFS2) to carve out a pathway for renewable biogas to qualify as a cellulosic fuel.  Expanding the scope of the RFS2 beyond liquid transportation markets could have promising implications for the slow-to-emerge cellulosic biofuels market.

Under the RFS2, the EPA requires domestic refiners and importers of transportation fuel to blend increasing volumes of renewable fuels into conventional gasoline and diesel.  The EPA sets the renewable volume obligations for various renewable fuels every year, and regulated entities must demonstrate their compliance by acquiring and retiring renewable identification numbers (RINs), which are publicly traded credits that fluctuate in value.

RINs provide an important financial incentive for the nascent advanced biofuels industry, helping these fuels compete with conventional fuels in the marketplace.  Cellulosic biofuels, a fuel pathway slated to deliver the greatest volume under the rule, have fallen short of expectations every year due to less capacity being built than otherwise predicted.

Expanding Universe

Under the expanded rules, biogas-derived compressed natural gas (CNG), liquefied natural gas (LNG), and electricity used to power electric vehicles would qualify for cellulosic RINs.  The final rule is likely to lead to a substantial increase in the production of cellulosic biofuels and create new markets for materials previously regarded as waste.  Opportunities for upgrading biogas to so-called bioCNG or bioLNG – also referred to as biomethane or renewable biogas and already used in fleet applications like garbage trucks and municipal buses – currently show high promise for biogas-to-transportation fuel.

As outlined in the U.S. government’s Biogas Opportunities Roadmap report released last month, biogas has broad applications across a range of diverse industries.  Livestock farms, industrial wastewater treatment facilities, industrial food processing facilities, commercial buildings and institutions, and landfills all produce biogas – either directly or in the form of waste feedstocks that can be converted into biogas.  According to Navigant Research’s Renewable Biogas report, the biogas capture market across the United States is expected to reach more than $4 billion in annual revenue by 2020.

All in all, biogas remains a vastly underutilized resource across the United States when compared to countries like Germany that have used a range of incentives to drive investment, particularly in agricultural applications.

The Curse of Versatility

The challenge for biogas in the United States is that to some it’s a fuel source, to others a waste mitigation strategy, and to others a distributed generation resource.  That makes it difficult to tailor policies that address all potential opportunities.  Adding to the confusion, distributed biogas is often treated by utilities as a strategic resource alongside solar PV and small wind, when in fact it can be utilized in the form of a traditional generator set, a fuel cell, or sometimes concurrently, in combined heat and power configurations.

With these issues in mind, the EPA’s final rule relating to biogas introduced a relatively novel and subtle feature for renewable energy markets: incentive flexibility.  Under the rule, the EPA not only expands the scope of RFS2, but allows the same amount of renewable electricity derived from biogas to give rise to RINs for transportation applications and renewable energy credits for electricity generation, while also qualifying for incentives under state renewable portfolio standards.

This potential for multiple revenue streams unlocks the versatility of biogas as a resource and is likely to attract new investment in the U.S. biogas market.

 

NRG Goes All In on Distributed Generation

— September 6, 2014

One of the largest independent power producer (IPPs) in the United States, NRG, provides power for the wholesale power markets with more than 50 GW of conventional installed capacity.  More recently, under outspoken CEO David Crane, the company has made a name for itself in renewables, with approximately 2.5 GW of solar PV, concentrated solar thermal, and wind capacity.  NRG also made headlines recently with a reshuffling of its business units: NRG Business (focused on conventional wholesale energy including nuclear, coal, and gas power plants), NRG Renew (focused on large-scale renewables), and NRG Home (focused on distributed generation [DG] and energy services for residential customers).

The company has relied on both organic growth as well as a series of acquisitions to fuel its DG offerings, including Dominion Resources and solar PV provider Rooftop Diagnostics, which expands the company’s customer base – particularly in the Northeast – and its expertise in residential systems.  These acquisitions underscore the growing opportunity presented by DG – systems that provide power onsite or at the distribution level of the grid.

Power in the Wild

What’s more surprising is NRG’s acquisition of Goal Zero, a privately held manufacturer of portable chargers and solar PV consumer products. Based in Utah, Goal Zero supplies unique niches of outdoor/off-grid enthusiasts that need power in the remote, challenging regions in which they travel.  The company effectively markets itself like Red Bull, touting the X-Games: “Zero Apathy, Zero Regrets, and Zero Boundaries is our mission. Goal Zero is our name.”  The company’s numerous ambassadors keep it real by leading expeditions to Kyrgyzstan or photographing surfers in Iceland.  They power their laptops with batteries recharged by the Goal Zero portable charger (the Sherpa Power Pack), and they blog at night with light from the Goal Zero solar lantern.  The portable chargers can be charged via car adapters, a wall outlet, or solar panels provided by Goal Zero.

The company’s products are sold through retail partners such as REI, Cabela’s, other sporting goods stores around the country, and online.  And by all measures, to use the vernacular, they appear to be crushing it. With 100 employees, the company ranked #9 on Inc.’s 500 list of fastest-growing private companies in 2013, with 3-year sales growth of 16,981%.

This is a big move for NRG and takes DG to a whole new level.  The appeal to NRG goes beyond the extreme adventure lifestyle to cell phone charging stations (think airports, stadiums, convention centers, malls, etc.) and potentially to off-grid living in the developing world.  I profiled Goal Zero in my Solar Photovoltaic Consumer Products report, along with Oregon’s Grape Solar, which sells similar products.  There I observed that large corporations have been circling the waters to get into the portable power/off-grid lighting niche through acquisition, but I was mostly thinking Panasonic, Schneider, and other consumer electronics companies – not the third-largest U.S. energy IPP.  NRG just went super DG, and we can expect many more to follow suit.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Energy Storage, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Utility Innovations

By Author


{"userID":"","pageName":"Smart Energy Program","path":"\/tag\/smart-energy-program","date":"9\/22\/2014"}