Navigant Research Blog

It’s a Tie! The USITC Announces Its Section 201 Solar Trade Case Recommendations

— November 3, 2017

On October 31, 2017, the US International Trade Commission (USITC) announced the remedy recommendations that it will forward to President Trump. As we have discussed in previous blogs (here and here), this case has been shaping the future of the US solar industry. Impacts have been felt around the world since May 2017, when Suniva and SolarWorld asked the USITC to investigate.

What Did They Recommend?

The recommendations of each USITC commissioner can be found here. In summary, they recommended a system involving import quotas, import licenses, and a percentage-based ad valorem tariff of up to 35% in the first year of implementation. The commissioners rejected Suniva’s petition to set a minimum import price at $0.74/W; in percentage terms, this would be comparable to a 100% tariff. Like with Suniva’s petition, the tariff will be reduced each year and will drop to up to 32% in the fourth year of its implementation (the best case would set the tariff at 15%).

So, What Will Happen Next?

On one side, even when the highest tariffs are applied, module prices in the United States would regress to those seen about a year ago—when the industry installed 14.6 GW of capacity, doubling its previous installation record. Thus, the effects on the downstream of the solar industry should be minimal. It is unlikely that the protection given by the USITC will be enough to create a boom for solar manufacturing in the United States, but it should be enough to keep a profitable cottage industry focused on the local market with modest growth potential.

On the other side, the tariff and quota limits will stop future global price declines from being reflected in the US market. This will affect the competitiveness of solar and hence, its expansion into areas with lower irradiance.

With China hitting 50 GW of installed capacity this year (3 times the second largest market), India poised to take over the United States as the second largest market, and installations in the global sun belt (Latin America, Middle East, South East Asia, and Australia) soaring, global solar players are unlikely to be affected by the tariff. However, potential mirror tariffs might push out US companies with local manufacturing capacity, like First Solar, from the international markets.

Overall, the recommendations of the USITC commissioners favor the status quo, keeping the solar industry intact but slowing its growth.

 

Postcard from Puerto Rico

— November 1, 2017

It has been more than a month since Hurricane Maria swept through Puerto Rico. The majority of this US territory remains without reliable electricity and is facing a crisis of unprecedented proportions. The lack of power in Puerto Rico, as well as the hurricanes that struck Florida and Texas, have turned up the heat on utilities, regulators, and the federal government regarding how best to rebuild power grids for greater resilience to protect against future outages during natural disasters.

While companies such as Tesla proclaim that Puerto Rico provides the perfect opportunity to deploy solar PV plus energy storage microgrids to rebuild regional power supplies, others argue the quickest way for restoration lies with fixing the traditional hub-and-spoke centralized transmission grid. Where does the truth stand? As is often the case, somewhere between these two extremes. Though I personally would invest more heavily into microgrids, I would not restrict them to solar energy because hurricanes can both damage and limit power production. Nonetheless, wind-powered mobile microgrids were part of the immediate response, smart dual-fuel generators should also be vital parts of the microgrid solution mix.

Can Lessons from the Military Rebuild Puerto Rico?

There are some important lessons that Puerto Rico can benefit from if it listens to the US military, a key responder to the crisis in Puerto Rico.

As I noted in a recent blog, the US Department of Defense (DOD) and data centers have been wrestling with how to maintain uptime while scaling back its reliance upon diesel generation. In a new Navigant Research white paper sponsored by Schneider Electric, I argue that innovative business models, such as microgrids as a service, may be the ticket to transforming industries reluctant to embrace distributed energy resources (DER) innovations. Likewise, military bases are following similar pathways forward, eliminating capital costs and financing upgrades through energy efficiency savings. Case in point is the Marine Corps Logistics Base in Albany, Georgia, which is the DOD’s first net zero energy military base.

The military microgrid market was viewed as an early adopter before budget issues helped stall the market. While a uniquely US market in terms of adoption for stationary bases, its effect is global since the DOD has sites scattered across the globe. Forward operating bases and mobile tactical microgrids can operate as standalone systems or interconnect with traditional grids and have been featured in recent conflicts in both Afghanistan and Iraq. A new report from Navigant Research notes that momentum for DOD microgrids is picking up.

Military Technology – Civilian Implications

The DOD has played a remarkably consistent role in commercializing new technologies that provide tremendous social benefits within the larger civilian realm. The Internet, created by the Defense Advanced Research Projects Agency (DARPA) in 1969, is perhaps the most ubiquitous of the DOD’s contributions to consumer markets. Along with accelerating the commercialization of traditional manufactured products such as aircraft, the DOD has also pushed the envelope on IT. These advances have been vital to all smart grid platforms, including microgrids.

Hurricanes and related rain and wind do pose challenges to all forms of power supply, including microgrids. Yet, developing a distributed and diverse portfolio of resources is always the best bet, whether one is talking about the wholesale or retail delivery system (note that Cuba’s reliance on microgrids limits outages compared to its Caribbean neighbors). While the Trump administration favors traditional energy pathways, the DOD has forged new ground in DER. One option for Puerto Rico could be to carve out a lead role for the DOD in rebuilding its power system, showcasing lessons learned from both domestic bases and remote power bolstering national security, while at the same time delivering the humanitarian services so direly needed by the local population.

 

Could New Trade Deals Create a Cloudy Forecast for the US Solar Market?

— November 1, 2017

After a lengthy investigation, the US International Trade Commission (ITC) unanimously voted in favor of pursuing protectionist policies on imported solar equipment. The panel found that imports of crystalline silicon PV cells and modules have caused serious injury to the US solar industry, rendering some firms incapable of competing in the global market. To insulate US solar companies from the practices of foreign producers, the ITC agreed to grant President Trump the authority to implement trade protection policies.

Renewable Energy Often Needs Government Support

As cost structures do not always reflect the environmental benefits of green technology, the integration of renewable energy (RE) often requires some form of government aid such as tax incentives, customs duties, or import tariffs to support nascent industries. For instance, Germany’s feed-in tariff scheme under the German Renewable Energy Act created financial security for investors, allowing for healthy market competition within the region to thrive.

Subsidies and tax breaks can also assist solar producers and manufacturers in their efforts to vertically integrate themselves along the value chain, especially when market prices become volatile. For example, a company producing solar cells may want to vertically integrate upstream by manufacturing polysilicon, or integrate downstream by installing PV equipment.

Government support can help alleviate cost impediments associated with integration along the value chain. The spillover effects from German policies, along with other market forces, have created an economic environment suitable for solar technology innovation and deployment. This has allowed Europe to represent 80% of global demand for solar panels for much of the 2000s.

A Global Trade

However, the efficacy of protectionism for the US solar market is up for debate, as the preferential treatment of domestic manufacturers may end up doing more harm than good. Comparative advantages and market imbalances within the RE industry have led to an increasingly globalized supply chain and a growing reliance on international trade. In fact, 87% of all US solar installations use foreign-assembled panels, which means that restrictions on solar imports would increase costs for US consumers. This could severely limit the integration of solar energy and US adoption of clean energy practices as a whole.

US Solar Market

The size of the US solar market at stake within the broader RE industry is grounds for concern. A substantial tariff could lead to the loss of 88,000 US solar energy jobs out of an estimated 250,000. US-based manufacturers have even spoken out against the use of trade sanctions due to the detrimental impact it would have on the entire solar industry.

In fact, researchers at the University of Chicago found that the primary driver of solar industry growth in the United States has not been manufacturing, but rather the increase of installations caused by decreasing costs of solar products. This study highlights the fact that solar employment in the United States is not dependent on manufacturing but on several other subsectors within the market such as installation, sales and distribution, and project development. The US decision to invoke protectionist policies may end up protecting cell and module manufacturing at a great expense to these subsectors.

Policy Ripple Effects

The ripple effects from these new tariffs would be far reaching. Many US businesses depend on competitive pricing along the entire value chain, not just in manufacturing. The solar industry represents one of the fastest growing industries in the country. Consequently, the decision to implement such policies could darken what was once a bright future for a critical industry.

 

Innovative Business Models Required to Drive Microgrids for Resilience

— October 17, 2017

The devastation caused by recent hurricanes in the Caribbean and southern United States has focused attention on the potential benefits of microgrids and local power generation. With widespread power outages and major damage to grid infrastructure, the opportunity to rebuild electrical systems with a more distributed and resilient architecture has never been clearer. Navigant Research’s new report Energy Storage for Microgrids highlights some the developments taking place in this emerging market along with the challenges that must be overcome to capitalize on the full potential of these technologies. The report explores innovations in business models that will be key to the growth of microgrids and distributed energy over the coming years, particularly in markets with significant financial constraints.

Protecting and Improving

Microgrids equipped with distributed energy storage, solar PV, and other forms of distributed generation can greatly enhance the resilience of the electrical system by preventing damage to a single portion of the grid from causing massive outages. This capability would be especially beneficial for islands such as Puerto Rico and the US Virgin Islands, which face frequent hurricanes capable of destroying transmission and distribution lines. In a centralized grid system, although power plants may still be operational after a storm, the energy they generate will be unable to reach customers. Microgrids with localized energy storage and generation are less susceptible to storm damage and can be brought back online more quickly, without damage in one area preventing service from being restored elsewhere. Furthermore, under normal conditions, microgrids provide numerous benefits to the grid by operating both independently and in a coordinated fashion to maximize the use of renewable energy without affecting grid stability.

Leveraging Financial Innovation to Drive Growth

Since microgrids are a relatively new technology platform, two major challenges that hold back new projects are the limited number of standardized solutions (despite some early plug-and-play offerings) and the limited financing options that reduce upfront investments and risks for customers. In the case of Puerto Rico and other islands with significant financial constraints, innovative business models will be critical for microgrids to spread.

Business model and financing innovations have been key drivers of growth in the solar PV industry over the past decade. Many of these same concepts are being applied to microgrid and distributed energy storage projects with the goal of negating the perceived risk of investing in new technologies. Some of the new models shifting risk and upfront investment away from customers include: power purchase agreements and leases with owner financing, software, energy as a service, and design, build, operate, and own models. New business models are being driven by the growing number of companies that leverage their backgrounds to provide microgrid solutions, including utility subsidiaries, energy service and technology providers, solar PV developers, and building energy management and controls providers.

Creating Opportunities

While the distributed energy industry races to help communities recover from recent disasters, it is critical that new technologies capable of reducing the effect of future storms be implemented. However, overcoming the lack of familiarity with these new systems and relatively high upfront costs will be a major challenge. The most successful companies in this industry will be those that can unlock the potential of new business and financing models to reduce the risk and upfront costs to customers. This ability to leverage private investment in infrastructure will be particularly important as countries with limited resources look to recover from massive damage while preventing similar issues in the future. In a webinar later this month, Navigant Research will explore the role of microgrids for improving resilience in another high profile area: data centers.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Finance & Investing, Policy & Regulation, Renewable Energy, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author


{"userID":"","pageName":"solar PV","path":"\/tag\/solar-pv?page=2","date":"5\/26\/2018"}