Navigant Research Blog

Take Control of Your Future, Part VIII: The Emerging Energy Cloud and Final Thoughts

— June 16, 2016

Power Cloud ComputingMackinnon Lawrence also contributed to this post.

In the initial blog in this series, I discussed seven megatrends that are fundamentally changing how we produce and use power. Here, I discuss my last megatrend, the emerging Energy Cloud and its role in changing our industry.

What Is Happening?

Since coming back from Chicago, where I attended the EEI Annual Convention, I am even more convinced that the electric power industry is transforming. In the closing session of the convention, several utility CEOs spoke about the current state of this transformation and shared success stories. Although utilities will continue to focus on safe, reliable, and affordable power, they will also have to embrace clean, distributed, and intelligent energy. It was interesting to hear CEOs’ perspectives on customer engagement (“we now actually listen to our customers”), innovation (“we are all in”), and distributed energy resources, or DER (“we want to play”).

While that’s great, we are faced with an enormous dilemma. It is hard to comprehend the complexity of what we are dealing with here. The Energy Cloud will be the product of accelerating innovation, the bulk of which lies beyond our immediate purview. Although we cannot predict or anticipate all the disruptions that will be triggered by emerging technologies, there is an inevitability to this transformation that cannot be ignored. These changes will penetrate all corners of the industry: customers, regulation and policy, technology, business models, and grid operations.

Meanwhile, there is limited or negative demand growth throughout the United States. And because of more efficient ways to use power and more prosumers taking the plunge to generate their own, less and less electrons will flow through the central power system (indefinitely). At the same time, in order to provide safe, reliable power, as well as support a tsunami of DER, exploding Internet of Things (IoT) capabilities at the edge of the grid, and rapid digitalization, significant grid investments are needed. The number one question is: Who will pay for this evolution? The search for new value and pricing models (and there will be many) has begun.

We are at the beginning of the transformation, and I don’t think we have seen anything yet. I predict we will enter a 20-year period of uncertainty, trial-and-error, and both successes and many failures. Along the way, we will figure out ways to transform our power generation, delivery, and consumption system into an orchestrated, flexible, open, and efficient Energy Cloud platform.

The Emerging Energy Cloud

In my blog, “The Impacts of the Evolving Energy Cloud,” I discussed how we are moving away from a centralized hub-and-spoke grid architecture based on large centralized generation assets toward a more decentralized grid with an increased role for renewables, DER, grid-edge IoT, and digitalization. The Energy Cloud is an emerging platform of two-way power flows and intelligent grid architecture. While this shift poses significant risks to incumbent power utilities, it also offers major opportunities in a market that is becoming more open, competitive, and innovative. Fueled by steady increases in DER, this shift will affect customer relationships, shape policy and regulation, change business models, propel continuous technology innovation, and overhaul grid operations in every single region of the world.

The Energy Cloud

Energy Cloud

(Source: Navigant)

North American utilities are at various stages of integrating distributed generation, demand response, energy efficiency, electric vehicles, and electric storage. Navigant expects this integration trend to accelerate. According to our analysis, DER is projected to grow almost 3 times faster than new central station generation in the next 5 years. That makes DER one of the most disruptive factors affecting the grid today and in the future. From a recent Public Utilities Fortnightly-Navigant survey among 400 utility stakeholders, 90% of survey respondents believe that the growth of DER will force a major shift in utility business models. We believe it is critical that utilities have an integrated DER (iDER) strategy and approach.

Path Forward: The Energy Cloud Playbook

The paths that utilities will follow to transition toward the Energy Cloud will be different. More importantly, the pace by which they move through iDER maturity levels will differ greatly. But understanding the North Star and taking the right steps at the right time are vital to making the transition successful.

At an advanced iDER maturity level, utilities have addressed issues arising from high DER penetration such as intermittency, reverse flows, and power quality issues. Utilities are using both information and operations technology (i.e., IT/OT) and have aligned their business processes, operations, and organizations appropriately. DER management systems (DERMSs) and advanced distribution management systems (ADMSs) are managing DER output at the feeder and substation levels. At this advanced iDER maturity level, the utility has augmented its role as a supplier of electricity and has become a platform provider and network orchestrator that enables prosumers to market their DER assets on an open market. This role is critical to fully maximizing the benefits of DER—and it will be key to providing future value to customers and shareholders.

What’s Next?

While the Energy Cloud is in its infancy today, its evolution will be both pervasive and highly disruptive to stable electric industry revenue streams for the next 30 years or more. Navigant projects that the Energy Cloud’s evolution could result in nearly $1 trillion worth of global investment shifting downstream to the retail segment of the value chain. What’s more, it could add an additional $1 trillion to 1.5 trillion in new value from investments in digital infrastructure and associated services by 2030.

As a follow-up to Navigant’s white paper, The Energy Cloud, we will publish our Energy Cloud 2.0 white paper in the next couple of months. This new white paper will move beyond the “what” to identify the “how.” At the same time, it will provide an Energy Cloud Playbook for the different utility, regulatory, investor, manufacturer, and government stakeholders positioning to build, manage, and protect their future in this emerging ecosystem.

Final Advice: Take Control of Your Future

This post is the eighth and final in a series in which I discussed power industry megatrends and the impacts (“so what”) in more detail. Navigant is at the forefront of what is happening in our industry. We continue to collaborate with our clients to help them navigate the rapidly changing energy landscape.

I have received positive feedback and insightful reactions on this blog series from many. Some readers wanted to understand more about the energy technology trends we see. So Navigant is preparing a new series in which we will cover the specific technology trends that we see disrupting our energy industry. Others have requested a megatrends series focused on oil & gas, which we are working on as well.

The megatrends discussed in this series cannot be underestimated. They are accelerating transformation in the energy industry, enabling the entry of new players, putting pressure on incumbent players, and altering traditional strategies and business models. Organizations will need to adapt, and there will be winners and losers as this transformation takes shape. My advice to senior leadership of energy companies is to take an integrated, holistic view of the opportunities and challenges that are flowing from these megatrends. Only then will you be able understand the full impacts and path forward. And that is the only way you can really take control of your future.

I hope you enjoyed this blog series. Stay tuned for future series.

Learn more about our clients, projects, solution offerings, and team at Navigant Energy Practice Overview.

 

Take Control of Your Future, Part VII: Merging Industries, New Entrants, and Colliding Giants

— June 13, 2016

Modern commercial premisesIn my initial blog in this series, I discussed seven megatrends that are fundamentally changing how we produce and use power. Here, I discuss how merging industries, new entrants, and colliding giants are changing our industry.

What Is Happening?

The power energy industry (the generation, transmission, and distribution of electricity) is not the sole territory of the incumbent utility anymore. Several players from other industries, including oil & gas (O&G), technology, retail, telecom, security, and manufacturing, are trying to get into the game. Navigant sees many cross-industry movements, and one of them is increased crossover investments between the electric utility and O&G industries. Besides pursuing mergers and acquisitions, which I discussed in one of my previous blogs, we see investments in new areas of opportunity like renewables, distributed energy resources (DER, including distributed generation, energy efficiency, demand response, storage, etc.), transportation, smart infrastructure and cities, and energy management.

As an example, in April, the French supermajor Total announced the creation of a Gas, Renewables and Power division, which it said will help drive its ambition to become a top renewables and electricity trading player within 20 years. According to a statement by the supermajor, “Gas, Renewables and Power will spearhead Total’s ambitions in the electricity value chain by expanding in gas midstream and downstream, renewable energies and energy efficiency.” Other companies, like ENGIE and Shell, have made similar announcements.

A Total Gas Station in Paris

TOTAL

(Source: Reuters)

Fighting for Future Energy Positions

The large incumbent players in the energy industry are under pressure. And the way things are unfolding now, it doesn’t seem like this will change anytime soon. Time to make some minor tweaks? Change course more drastically? Or completely reinvent ourselves? These are discussions that are taking place more frequently at the board and executive levels of the incumbent players.

Electric utilities are under pressure because consumption growth is minimal and, in many cases, flat to slightly negative. The average consumption per customer (both residential and commercial) is declining due to self-generation, energy efficiency, demand response, etc. As a result, revenue is declining. Costs are increasing because of needed investments in a safe, reliable, cleaner, and more distributed and intelligent electric power grid. Utilities are identifying new revenue streams and thinking through new business models that will bring shareholder value going forward.

Oil companies are under pressure because of the continued low oil price. Ever since the oil price dropped to historic lows in 2014, the struggles of the industry have been daily news. Short-term hopes for a recovery were tempered significantly by the outcome of the recent OPEC meetings in Doha. Oil companies are looking for ways to survive by taking out costs, reducing their upstream capital investments, and shutting down unprofitable assets. They are also looking for new opportunities to grow revenue and future shareholder value.

Industry Giants Are Responding

In the last couple of months, I’ve attended several meetings with CEOs from large utilities and O&G companies. It is remarkable how their views on what is happening in the energy space are so similar. What is even more interesting is that their strategies to address the challenges and opportunities are almost identical.

Here is what they say is happening:

  • Energy consumption and gross domestic product (GDP) growth: Although population and GDP growth (at a slower pace) drive growing energy demand, the trend line between GDP and energy consumption growth has been broken. This is especially the case in developed countries. Energy consumption in the United States flatlined from 2014 to 2015 even as GDP grew by 2.4%. Since 2007, energy consumption has fallen 2.4% while GDP has grown by 10%, according to the 2016 Sustainable Energy in America Factbook by Bloomberg New Energy Finance. At the level of individual utilities, we see this playing out. Utilities with no or limited customer growth see their overall revenue declining. Utilities that still see customer growth are reporting that demand (and revenue) is not growing at the same pace. This is creating an unsustainable situation, with flat or declining revenue, while the costs to serve their customers and investments in the grid are growing.
  • Impacts of climate change: In an earlier blog, we discussed the impacts of the growing number of policies and regulations to reduce carbon emissions. It is now clear that this impact is being felt. Beyond the COP21, Clean Power Plan, and other global or federal policies and regulations, many initiatives at the regional, country, state, and local levels are being designed and implemented in support of carbon emissions reductions. Sustainability objectives between government, policymakers, utilities, and their customers are more closely aligned than ever before. States and regulators will continue to discuss how sustainable targets can be met without affecting jobs and the access to safe, reliable, and affordable power. And utilities and O&G companies will continue to evolve to support cleaner, more distributed, and more intelligent energy generation/exploration, distribution, and consumption.
  • Big power to small energy and the rise of the prosumer: Customer choice is driving a large move from big to small energy. More and more customers are choosing to install DER on their premises. DER solutions include distributed generation, demand response, energy efficiency, distributed storage, microgrids, and electric vehicles (EVs). This year, DER deployments are projected to reach 30 GW in the United States. According to the U.S. Energy Information Administration, central generation net capacity additions (new generation additions minus retirements) are estimated at 19.7 GW in 2016. This means that DER is already growing significantly faster than central generation. On a 5-year basis (2015-2019), DER in the United States is expected to grow almost 3 times faster than central generation (168 GW vs. 57 GW). This trend varies by region because policy approaches, market dynamics, and structures differ. However, the overall move to small power will persist. In other words, the movement toward customer-centric solutions and DER will ultimately become commonplace worldwide.

And here are the strategies of large utilities and O&G companies going forward:

  • Search for shareholder value: Both utilities and O&G companies are looking across the entire energy value chain for future shareholder value. Right now, that value is not in exploration & production or power generation. Yet, shareholders are still interested in natural gas pipelines and transmission that support the movement of natural gas and electricity.
  • Attempts to develop new solutions and businesses: There has been more than just interest from incumbent players in new energy solutions such as renewables and other alternative fuel sources (hydrogen, biofuels, etc.), DER, behind-the-meter energy management, electric transportation, smart cities, etc. With serious profitability and growth pressure on their core businesses, more serious attempts to build new, potentially transformational businesses in this space are increasingly evident.

For example, Total’s Chairman and CEO Patrick Pouyanné states, “The goal is to be in the top three global solar power companies, expand electricity trading and energy storage and be a leader in biofuels, especially in bio jet fuels.” To this end, Total announced last month that it is acquiring Saft, a designer and manufacturer of high-tech batteries for the manufacturing, transportation, and civilian and military electronics sectors. The company reported sales of €759 million ($856 million) in 2015 and employs more than 4,100 people in 19 countries. “The combination of Saft and Total will enable Saft to become the group’s spearhead in electricity storage,” Chairman and CEO Pouyanné said in a news release, “The acquisition of Saft is part of Total’s ambition to accelerate its development in the fields of renewable energy and electricity.”

Transportation and Smart Cities

Transport electrification, the increased use of biofuels (including bio-jet fuels), and the use of hydrogen to fuel vehicles are all on the rise. These alternative fuel vehicles will slowly but surely replace existing carbon-based transportation fleets, which represent approximately 35% of the global demand for oil. Now there are reports of 500,000 committed purchases of the Tesla Model 3. If Tesla can produce 500,000 cars a year, with models that are in the $30,000-$40,000 price and 200-plus-mile range, this will be another tipping point and game changer for EVs.

Meanwhile, as part of the smart city movement, cities are examining the sources and efficiency of their energy in order to reduce their greenhouse gas emissions and energy costs. In the process, cities are becoming more ambitious and proactive in setting energy strategy. They are seizing opportunities to work with utilities and other stakeholders to create new urban energy systems. The emerging vision is of a smart city with integrated large- and small-scale energy initiatives, including major infrastructure investments, citywide improvements in energy efficiency, and distributed energy generation. As a result, both utilities and O&G companies are increasingly interested in becoming even more engaged with new transportation concepts and innovation (well beyond fuel) and smart cities.

So What Does This Mean?

Do the above examples represent some isolated, small adventures in crossover investments, or do they mark a trend toward two mega-industries (electric utility and O&G) colliding across the entire energy value chain and looking for shareholder value? Time will tell. What is certain is that there will be winners and losers.

There is a clear push for new revenue streams and growth opportunities given the current oil price situation. But we see also new, longer-term threats that will force the incumbent players to reinvent themselves and become broader energy companies. The industry giants seem to be in the best position to be the winners—and ultimately, they have no choice. After all, these are still the biggest companies in the world, and they have a huge shareholder interest that needs to be fed into the future. They simply are not going to declare “game over,” return the equity to the shareholders, and then advise them to go find new companies to invest in.

This post is the seventh in a series in which I discuss each of the power industry megatrends and the impacts (“so what?”) in more detail. My next blog will be about the emerging Energy Cloud. Stay tuned.

Learn more about our clients, projects, solution offerings, and team at Navigant Energy Practice Overview.

 

New York State Is Embracing the DER Revolution

— June 9, 2016

clean energy backgroundA significant decision was recently handed down from the New York Public Service Commission (PSC) as part of the state’s Reforming the Energy Vision (REV) proceeding. On May 19, the PSC approved measures aimed at improving distributed energy resource (DER) integration and overall system efficiency through new revenue models. While the rate-of-return model has traditionally served utilities well, the advancement of renewable energy technologies requires incentivized revenue models in order to maximize the benefits to consumers and utilities alike.

Altering the Status Quo

Traditionally, utilities have earned revenue from their capital outlays through ratepayer returns. Investments in transmission lines or substations can be recouped, incentivizing a centralized power generation structure. With the recent influx of solar and wind energy, DER is now beginning to alter the status quo. While state and local governments across the nation are encouraging the integration of DER, many utilities lack proper incentives to address the problem head-on. In order to incentivize these types of distributed technologies, utilities in New York are now eligible for financial rewards for behavior that increases consumer economic and environmental benefits. Such behavior includes greenhouse gas and carbon emissions reductions, reaching energy efficiency targets, instituting customer engagement programs, and improving renewable energy project interconnection times. There are already examples of this DER strategy in action. Consolidated Edison, serving 3.4 million customers, was recently able to defer investment in a distribution substation through the more cost-effective means of DER adoption.

Along with the reformed revenue models, major utilities will also now be required to develop an overall system efficiency proposal by the end of this year to reduce generation during periods of peak demand. This measure is intended to promote more decentralized and efficient power generation sources. Finally, these reforms will enable the deployment of smart meters within New York. Barring ConEdison’s anticipated smart meter deployment in 2017, there is essentially no smart meter activity within the state. With over 8 million electric meters statewide, these reforms will hopefully improve the adoption of this fundamental smart grid technology. With this latest New York PSC decision, utilities are now left with a business case for advancing a more decentralized electrical grid that will ultimately provide benefits to both utility stakeholders and consumers. Following these and other REV reforms, the state is on track to meet its ambitious goal of achieving 50% renewable energy by 2030. My colleague Brett Feldman highlighted New York’s REV framework in a previous Navigant Research blog.

Reliability and Flexibility

DER allow for the prospect of a decentralized, reliable, and efficient electrical grid. With public demand for renewable energy resources climbing, states have an obligation to address consumer concerns. States troubled by the potential issues surrounding DER integration could benefit from studying the results of New York’s recent reforms. The future success of DER may well lie in these solutions aimed at addressing the concerns of both utilities and their consumers.

 

Technology Issues in Smart Devices Can Cause Major Problems for Consumers

— January 29, 2016

close up of man hands touching tablet pc screenOver the past few years, there has been an explosion of devices that have the potential to revolutionize our daily lives. Smart devices promise to help us piece together a smart home, manage our energy consumption, and track our health and fitness at the push of a button. My 82 year-old grandmother has an iPad Air, which she uses every day to play games that keep her mind sharp, browse movies online that she can send to her entertainment console, and track her vitamin and medication intake. She once casually commented, “I don’t know what I would do without my iPad now.”

While embracing smart devices can lead to a bright future of connectivity and convenience, the technology may not be developed enough for us to so readily welcome them into our homes. Lately, there have been several cases showing that these so-called smart devices sometimes have serious flaws.

Out in the Cold

For example, the Nest Learning Thermostat—a smart thermostat that can be monitored and adjusted via a smartphone app—recently experienced a software glitch that left many of its customers in the cold. This may seem like a somewhat trivial issue—unless you are elderly, have an infant, or fear your pipes may burst. Nest reported that the issue had been fixed for 99.5% of customers, yet the fix involves a complicated nine-step manual restart (to Nest’s credit, it does offer to send an electrician to your home for assistance), and 0.5% of customers still did not have a solution.

Though Nest is arguably one of the best smart thermostats on the market, its technology issues don’t stop there. In January 2016, it was reported that Nest Learning Thermostats were leaking ZIP codes over Wi-Fi, meaning that any person walking or driving by with the right equipment could intercept that information. While leaked ZIP codes are probably not the most serious security concern, it does lead back to one of the main issues around smart devices today: are these devices secure, and can consumers trust them?

Nest is not the only company experiencing technology issues. Researchers who discovered the Nest ZIP code leaks also found the Sharx security camera and the PixStar photo frame were sending unencrypted data that could potentially be intercepted. The Honeywell Lyric, a rival smart thermostat to the Nest product, was reviewed as having glitches in its flagship geofencing feature. In April 2015, Nick Bilton—the New York Times writer who covered the Nest glitch—also reported on the security flaws he had experienced with the wireless fob for his Prius. Finally, the Fitbit, a fitness/health-focused wearable, was recently hit with a class-action lawsuit over its supposedly inaccurate heart rate monitoring.

A Growing Market

Pointing out these technology issues is not meant to scare consumers away from buying a smart thermostat, a keyless car, wearables, or any other popular smart device. These devices will inevitably become a part of our lives. Navigant Research estimates that the global market for communicating and smart thermostats (and their respective software and services) alone will reach $2.3 billion by 2023. The point is that it is our responsibility as consumers to not only understand and be aware of the risks associated with connected smart devices, but also to demand that these devices be safe and secure if we are going to embrace them.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Finance & Investing, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Transportation Program, Transportation Efficiencies, Utility Innovations

By Author


{"userID":"","pageName":"Utility Innovations","path":"\/tag\/utility-innovations","date":"6\/26\/2016"}