Navigant Research Blog

Transforming the Way We Live, Work, and Move with Wireless Power: Part 2

— May 17, 2017

This post originally appeared on the MIT Enterprise Forum of Cambridge website.

Development of any new technology, particularly one that goes to market in a technology licensing business model, cannot be performed in a bubble. It requires the feedback of users to refine future advances. There simply is no market for a technology that doesn’t provide a compelling value proposition. The development of wireless power is no exception.

As mentioned in part 1 of this blog series, the MIT Enterprise Forum of Cambridge CleanTech Committee brought together a panel of experts to recount this journey from lab technology to commercial product and reflect upon future applications for wireless power. The panel, Transforming the Way We Live, Work & Move, was moderated by Benjamin Freas, principal research analyst at Navigant Research. It included Marin Soljačić, PhD, professor of Physics at MIT and founder of WiTricity; Alex Gruzen from WiTricity; Ajay Kwatra from Dell; and Patrizia Milazzo from STMicroelectronics.

The Partner Landscape

Indeed, much of the panel was composed of WiTricity partners that are helping to deliver on the vision of making a broad range of products truly wireless. Kwatra relayed Dell’s journey through wireless power implementation. Wireless power is not a new concept to Dell; it shipped its first laptop with wireless charging capabilities in 2009. Dell’s vision is to enable true all encompassing mobility by providing a cable-less desk. Wi-Fi introduced freedom from the Ethernet cable, and now the last cord is power.

The first early foray used inductive coupling rather than WiTricity’s magnetic resonance technology. As a result, the laptop required precise placement in order to charge and provided a poor experience. Though magnetic resonance solved this problem, it was not ready for implementation in a laptop. WiTricity relied on input from Dell as it established the efficiency and wattage needed. Dell knows how its products are used and what challenges users face, so it was able to bring this expertise to WiTricity in a partnership to create a viable product.

The Road Ahead

Wireless charging of mobile phones has already reached mass-market adoption and is beginning to appear in laptops and EVs. However, the actual use of wireless power—even in devices that are equipped with it—has been persistently low. Consumer awareness remains a challenge. Current wireless power technology does not provide users with a truly wireless experience.

Nonetheless, the future of wireless power is promising. The increased reliance on electronics and the constant need to power them are driving wireless adoption. Increased awareness and use of wireless power functionality have been generated as a result of the creation of more devices that have wireless charging capabilities and the expansion in public wireless charging infrastructure.

In the future, the expansion of wearable electronic devices and Internet of Things (IoT) devices will further magnify the need for new power solutions. The establishment of public wireless charging infrastructure in locations such as coffee shops and airports is expected to reinforce adoption through the network effects they create. But user experience will be the ultimate driver of wireless power.

 

Transforming the Way We Live, Work, and Move with Wireless Power: Part 1

— May 8, 2017

This post originally appeared on the MIT Enterprise Forum of Cambridge website.

Nikola Tesla first experimented with transmitting power without wires at the turn of the 20th century. Until recently, the concept has remained impractical and expensive in everyday applications. Today, the proliferation of mobile phones, electrification of transportation, and impending Internet of Things (IoT) renaissance have translated into a rapid expansion of devices that need electricity. All the while, technological advances have improved the amount of power that can be transferred wirelessly, the distance it can travel, and how efficiently it can be moved, making wireless power a commercial reality.

The MIT Enterprise Forum of Cambridge CleanTech Committee brought together a panel of experts to recount this journey from lab technology to commercial product and to reflect upon future applications for wireless power. The panel, Transforming the Way We Live, Work & Move, was moderated by Benjamin Freas, principal research analyst at Navigant Research. It included Marin Soljačić, PhD, professor of Physics at MIT and founder of WiTricity; Alex Gruzen, CEO at WiTricity; Ajay Kwatra, vice president of Client Technology & Architecture for Dell; and Patrizia Milazzo, Energy & Power management specialist at STMicroelectronics.

The Birth of a Company

For WiTricity, this journey started in 2007, when Professor Soljačić published a paper demonstrating the transfer of 60W with 40% efficiency over distances in excess of 2 meters. The impetus for this research came from a sleepy revelation after Professor Soljačić was awakened by his mobile phone at 3 a.m. The phone beeped when the battery was low. If he neglected to plug it in, it would disrupt his sleep.

Though the use case for mobile phones was clear, the distances and power levels associated with the technology have many more applications. The task of charging is a burden for many devices. For EVs, the act of plugging into a charge creates another friction point that can potentially deter consumers. Similarly, wearables present a charging challenge—they often have unusual form factors that make plugs awkward, yet still need to be charged.

Industrial and medical applications of wireless charging are also emerging. Increased automation in manufacturing has translated to mobile robots on factory floors. These robots need power. Designing a robot to navigate to a wireless charging pad is far simpler than designing one to insert a power cord. Applying this to an operating theater creates the possibility of charging surgical tools after they have been sealed and sterilized, eliminating the need to do so during a medical procedure. This same freedom even enables medical devices that can be completely sealed and powered and charged in situ.

Which Application to Pick?

Wireless power has the ability to transform a diverse range of industries through multiple applications. The challenge for a startup is to narrow down options and focus on a strategy that can be executed. For WiTricity, the best way to change the world was to enable other companies that built products to make their products better by incorporating wireless power technology. This meant a strategy of licensing its technology to partners that create products rather than creating the products themselves.

The initial challenge, according to Professor Soljačić, was attracting talented people to navigate the development of the technology from a laboratory prototype to prolific components of numerous products. Ultimately, WiTricity aims to provide its technology in a simple development kit so that anyone can incorporate it into their design. However, developing this “resonance-in-a-box” solution requires more than technological expertise. It requires the deep understanding customer pain points and the market intricacies associated with specific industries. As Alex Gruzen stated in the panel, “When you are a startup, your customers are partners.”

More to come on the road ahead in part 2 of this blog series.

 

Wireless Power Promises New Capabilities for Smart Buildings

— November 11, 2014

In the science fiction universe, transmitting power over great distances is remarkably easy.  A shield generator could be placed on, say, the forest moon of Endor and beam its power to an orbiting space station.  Lamentably, in the real world, such extensive wireless power transfer remains elusive.  But 2015 is poised to be a pivotal year in wireless power.

Current wireless power solutions focus on charging mobile phones and electric vehicles, and both are gaining momentum.  On the mobile phone front, the first commercially available products based on the Alliance for Wireless Power’s Rezense standard will soon hit the market, while the Wireless Power Consortium’s competing Qi standard continues to expand around the globe.

In the auto industry, wireless technology represents the future of plug-in electric vehicles and could be a factory option as early as 2017.

Smart Building Applications

The promise of wireless power extends beyond these early adopter markets – particularly in smart buildings.  The proliferation of the Internet of Things in buildings is currently hindered by limitations in power and communication capabilities.  University of Washington professors Joshua Smith and Shyam Gollakota have an innovative approach to tackling both problems wirelessly.  The two have started Jiva Wireless to develop the solution and plan on taking a leave of absence in 2015 to focus on bringing products to market as early as 2016.

Their approach is to harvest ambient energy in the form of Wi-Fi, TV, and cellular transitions.  As detailed in Navigant Research’s report, Energy Harvesting, these types of systems are already gaining traction in a variety of applications.  What’s novel about the Jiva Wireless approach is the use of ambient backscatter communication, which selectively absorbs and reflects radio frequency (RF) signals, effectively combining power and communication into one function.

Landscape without Wires

The launch of Jiva Wireless adds to an already crowded field of wireless power solutions.  Many of these solutions, as promising as they may be, have yet to make it to the real world.   Funding of these companies does not appear to be a challenge, though.  Energous, a company developing a wireless power solution using radio waves, raised $24 million in an initial public offering in March, despite not having a commercially available product.  Similarly, uBeam, which has a prototype that uses ultrasonic waves to transfer power, just received $10 million in Series A funding, bringing the total amount of capital raised to $12 million.

Wireless power incumbents are shifting, as well.  Duracell, an early adopter of wireless charging for mobile electronics and the pioneer of Powermat technology, is being split from its parent company, Proctor & Gamble, as part of a strategy of divesting non-core businesses.  Meanwhile, JVIS and d-Wired are attempting to resurrect conductive wireless charging by licensing intellectual property from FliCharge.  The shifting landscape of wireless power providers indicates an interesting road ahead in 2015.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Finance & Investing, Policy & Regulation, Renewable Energy, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author


{"userID":"","pageName":"Wireless Power","path":"\/tag\/wireless-power","date":"5\/23\/2018"}