Navigant Research Blog

Why It’s Still Too Early to Bet on Residential Energy Storage in the United States

— April 1, 2014

SolarCity announced recently that it is discontinuing the residential energy storage product that it rolled out in California 2 years ago.  The company put the blame on the shoulders of utilities, which SolarCity said were stalling permitting of its new units.  But, in fact, SolarCity has only itself to blame for the failure of its product.

That’s because the company never stopped to ask why a residential customer would want a battery storage system.  In some cases, such as with off-grid homeowners and homeowners (such as indoor horticulture enthusiasts) with very expensive equipment that needs reserve power, batteries are a requirement.  But the typical homeowner gets no financial advantage from shifting power from one point in the day to another.  Rates that would allow such an advantage, known as time-of-use rates, are rarely offered by utilities to residential ratepayers.  Because residential photovoltaic (PV) power is usually net-metered, meaning that homeowners can receive credit for putting energy back onto the grid, there’s no reason why a solar homeowner would receive a financial advantage from storing energy.

Diesel over Batteries

Meanwhile, SolarCity was trying to sell its residential storage units at an outrageous markup.  I have SolarCity panels on my house in Boulder, Colorado, and when I inquired about the cost of the battery backup system, I was quoted $25,000 for a 20 kilowatt-hour (kWh) system.  That’s despite the fact that Tesla Motors (which makes the battery packs for SolarCity) has told the world that it is able to build its battery packs for less than $300 per kWh.  It’s hard to understand why I should give SolarCity more than 3 times the money it cost the company to buy the battery pack for a system that doesn’t earn me one penny.  The only benefit that such a system could provide me is reserve power when the grid shuts down.  However, a far more reasonable solution to that problem would be an emergency diesel generator.  Yes, it’s dirty, but the carbon and pollutants produced by running a diesel genset during the few hours of a year that I would need it would be far less than that produced from the manufacture of 20 kWh of batteries.

Mind the Wiring

So, is there any merit to SolarCity’s claim that the California utilities are responsible for freezing out the battery system product?  It’s not very likely.  That’s because a battery pack that is situated behind the meter does not require any utility permitting, just as a diesel generator doesn’t.  What does require approval is the capability of an individual building to island itself from the grid (which means that it continues to operate as a nanogrid by itself and shuts itself off entirely from the distribution grid when it does so).  If that’s the case, then the electric utility has every right to deny permitting if it doesn’t feel comfortable with the system.  Improperly set up, islanding can cause a life-threatening situation for an electricity linesman.  The practice of islanding is governed by the IEEE 1547 protocol, which is an extremely complex, difficult to engineer, and expensive set of rules governing an islanded system.

There are ways to do residential energy storage well.  In our upcoming report on the topic, Navigant Research expects that almost 20,000 residential energy storage systems will be installed in Germany, Japan, and South Korea combined in 2014.  All three countries have made concerted efforts to standardize the specifications and permitting process for PV-integrated residential solar systems.  They have also introduced generous subsidies for such systems.  It’s an expensive and politically difficult process, but it’s getting results in those countries.

 

Village Nanogrids Fuel Mobile Networks

— April 1, 2014

There have been numerous efforts to electrify remote parts of the developing world.  Typically, these have come in the form of philanthropic ventures, with little to no expectation of a return on investment, using distributed energy systems that were often out of touch with the consumers’ energy needs, as well as their capacity to maintain the systems.  As a result, these efforts have been largely ineffective.  More recently, some for-profit companies (mostly mobile network operators) have found that a business case exists for investing in distributed energy for rural off-grid communities – by implementing systems that are much more in tune with customer needs and capabilities.  These systems usually take the form of nanogrids, which are described in the recent Navigant Research report, Nanogrids, and in my colleague Peter Asmus’ recent blog.

For mobile network operators (MNOs) in emerging markets, such as MTN, Vodacom, and Safaricom in Africa and Digicel in Latin America, the challenge is that there are millions of mobile customers without access to the electricity grid; approximately 259 million, according to a recent GSMA report.  For these customers, the cost of charging their phones can represent up to 50% of their total mobile expenditures (airtime plus charging costs), so their phones are only turned on when absolutely necessary, in order to conserve battery life.  Since MNOs make money when the phones are in use, it’s in their interest to make charging convenient and inexpensive enough that conserving battery life becomes an afterthought.  MNOs are quickly finding that distributed nanogrids, such as 10 watt solar home systems (SHS), are the cheapest, most effective way to maximize cell phone usage by existing customers, as well as to bring more customers online.  To stimulate the spread of these systems, MNOs are starting to form commercial partnerships with local vendors of portable solar products.

Friendly Local Utilities

In Uganda, MTN has partnered with Fenix International to provide MTN airtime vendors with a Fenix ReadySet solar-powered battery kit that charges phones and provides LED lighting for the vendor station, allowing them to stay open longer.  The ReadySet has turned MTN vendors into micro-utilities in their communities, creating additional revenue from phone charging and increased mobile money transactions, as well as savings for the vendor from using the LED light.  MTN is also repackaging the ReadySet as the ReadyPay Power System, which is now available to all its customers on a pay-as-you-go basis.  Similarly, Digicel Haiti partnered with Solengy in 2011 to install over 400 solar-powered street lamps and phone charging stations across Haiti.  Each station is operated by an airtime vendor that sets up shop below the LED street light and manages the phone charging service.  Other examples include Vodacom and Mobisol in Tanzania and Safaricom and M-KOPA in Kenya.

Forming the backbone of this transition are pay-as-you-go business models and mobile money, which I’ll explore in my next blog.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author


{"userID":"","pageName":"2014 April","path":"\/2014\/04?page=9","date":"12\/15\/2017"}