Navigant Research Blog

Lucid Motors Is the Latest Silicon Valley EV Upstart

— November 28, 2016

Electric Vehicle 2Chances are you’ve never heard of Lucid Motors. The company has been around for nearly a decade but only recently rebranded itself from Atieva in mid-October. Despite (or perhaps because of) its lack of public awareness, several members of the Lucid team came to Los Angeles for some private briefings during AutoMobility LA. I had an opportunity to learn about what Lucid is planning, get a VR walk-around of the company’s finished vehicle design, and check out one of its prototypes.

The Lucid team includes former Tesla staff among its ranks, including CTO Peter Rawlinson and marketing director Zak Edson. The company’s as-yet-unnamed luxury sedan is scheduled to go into production in 2018 and will be built at a US factory, although no site has yet been announced. Atieva was launched in late 2007, focusing on producing batteries for commercial EVs. “Atieva-powered vehicles have accumulated more than 20 million miles of real-world use with a faultless safety record,” said Rawlinson.

Smaller Footprint, Larger Interior

Rawlinson joined Atieva in 2014 when the company decided to build cars from the ground up. Despite the achievements of Tesla, Rawlinson explained that he still saw a lot of untapped potential in repackaging everything to take advantage of the electric drive system. Tesla’s Model S has the footprint of a large luxury car, but only has the passenger volume of a midsize sedan at 94 cubic feet. However, it meets the US Environmental Protection Agency’s large car designation based on its 26 cubic feet of cargo space, bringing the total to the 120 cubic feet threshold to qualify as “large.”

Rawlinson and Derek Jenkins, Lucid’s vice president of design, sought to reverse that trend with a smaller footprint (akin to a midsize Mercedes-Benz E-class) and an interior volume of 112 cubic feet for occupants. The Lucid sedan uses a similar skateboard layout to other modern dedicated battery EVs (BEVs), with the battery pack under the floor and electric motors at each axle.

In mid-2016, Lucid published a video showing off the performance capabilities of an in-development powertrain prototype based on a Mercedes-Benz Metris cargo van. Using a 600 horsepower (hp) front motor and 400 hp rear motor, the van is capable of sub-3 second 0-60 mph acceleration.

Better Batteries

Lucid has been developing its own proprietary battery chemistry that Rawlinson claims will have 20% greater volumetric energy density and will be less vulnerable to deterioration from repeated fast charges. Assuming Lucid and its cell manufacturing partners can deliver, this will help enable the company to deliver a 100 kWh battery with an optional 130 kWh unit to deliver driving ranges of 300 and 400 miles, respectively. The company plans to equip its car with a sensor package capable of Level 4 autonomous driving. The package includes four solid-state lidar sensors, short- and long-range radar and cameras, and ultrasonic sensors.

The prototype that Lucid brought to Los Angeles had an incomplete interior, but based on the VR demo and looking at the test vehicle, it does appear to be more roomy than Tesla’s Model S. Pricing won’t be announced for some time but it will likely be comparable to the Tesla and in line with Lucid’s goal of delivering a zero-emissions executive jet for the road. Lucid plans to publicly reveal its car on December 14 at its engineering facility in Fremont, California.

 

Automakers Doing More Rigorous Safety Analysis for Vehicle Automation

— November 23, 2016

Connected VehiclesBack in September 2014 as the ITS World Congress gathered in Detroit, General Motors (GM) CEO Mary Barra announced that in 2016, a new Cadillac model would become available with the semi-autonomous Super Cruise system. With only a handful of weeks left in 2016, we now know that the Super Cruise will debut on Cadillac’s flagship CT6 sedan, but it won’t be arriving until sometime in 2017.

A lot has happened since that announcement, and GM has put a much greater emphasis on ensuring safety as a result of the massive ignition switch recall that began early in 2014. Those process changes have led to some significant upgrades to Super Cruise in an effort to avoid the issues caused by human interactions with Tesla’s similar AutoPilot driver assist system. Navigant Research’s Autonomous Vehicles report projects that by 2020, approximately 13 million vehicles with these so-called Level 2 automation systems will be sold annually.

Geofencing

In the process of evaluating the safety of Super Cruise, one of the key differences that GM has implemented is geofencing. Since Super Cruise is designed primarily as an advanced highway driving assist system for use on limited access roadways, GM is not relying on customers to understand where it does and does not function. Instead, the system will check the navigation map—if the vehicle isn’t on a suitable road, the driver will not be able to activate it. In contrast, Tesla’s operating instructions state that AutoPilot should only be used on divided, limited access roads, but there is nothing in the system to actively prevent a driver from using the system in an urban area or any other roadway that it’s not designed for.

Similarly, Tesla doesn’t really take measures to prevent operators from taking their attention away from the road. Countless videos have been posted by Tesla drivers as they take a nap, read, or even climb in the back seat while using AutoPilot. The research conducted by Bryan Reimer and the Advanced Vehicle Technology Consortium at the Massachusetts Institute of Technology reinforces the idea that even informed drivers will get distracted while using systems like AutoPilot or Volvo’s Pilot Assist.

Improving Safety

Cadillac is installing an active driver monitoring system in the CT6, which will include more prominent alerts if the operator does not remain engaged while using Super Cruise. If the driver does not respond, the car will pull to the side of the road and come to a safe stop.

GM safety engineers have also addressed the issue of the inevitable mechanical failure. When fully autonomous vehicles arrive, they will require systems that can maintain control during a failure mode until the vehicle is safely stopped. One of the key safety failure modes for a system like Super Cruise is the electrically assisted steering.

One of the optional features on the currently available CT6 without Super Cruise is the Active Chassis Package, which includes a rear-wheel steering system to aid low-speed maneuverability and high-speed stability. This rear steering system will be included on the CT6 with Super Cruise. While the rear steering is not designed to provide the same full maneuvering capability of the normal front steering, it will be sufficient to safely steer the car to the side of the road in the event of a front steering failure.

We won’t have an opportunity to fully evaluate the capabilities of Super Cruise until sometime next year, but it does inspire some confidence that GM is at least thinking about and trying to address both human and mechanical failure modes before putting the system into customer hands.

 

Insurance Companies Expand into Energy Management to Mitigate Risk

— November 23, 2016

Home Energy ManagementInsurance companies are starting to get smart about the smart home and energy management. Though these companies are in the very early stages of participation in this market, interest has been piqued and insurers are starting to partner with vendors to offer consumer energy management and connected home solutions. For example, State Farm has partnered with ADT Pulse and Generac to offer consumers discounts for home energy products and services. SmartThings, before it was acquired by Samsung in August 2014, had partnerships with four of the 10 largest insurance companies, including American Family Insurance, which joined with SmartThings and Microsoft to create a smart home incubator in Seattle.

Homeowner Alerts

Insurance companies can find value in data from connected devices by detecting issues and alerting homeowners before catastrophe strikes, especially with large appliances and HVAC equipment. They can also use them to develop more informed policies and offer discounts for adopting these technologies. Energy management is especially appealing to insurance companies because it allows residential customers to remotely monitor and control a range of connected energy devices such as thermostats, lighting, appliances, and electronics, which can be useful in powering down devices during emergencies and even deploying backup power during outages.

Insurance providers in particular have an incentive to offer these types of solutions because it can avoid costly payouts. A monitored, controlled, and automated home that can better mitigate risk and avoid disaster can save insurance companies a significant amount of money in avoided insurance claims.

Emerging Opportunities

While insurance providers have reason to offer consumers these solutions, they are not the only non-utility companies interested in energy management. In recent years, companies outside the traditional energy industry have engaged in this space and found value in offering energy management solutions as part of connected home offerings. These include companies such as AT&T with its Digital Life platform, Comcast with its Xfinity Home offering, and Vivint Smart Home. As Alex Hawkinson, CEO of SmartThings, has said, “The number of services that could be spun out of this is limitless. You can pick industry after industry. The ramifications of making the entire world self-aware are simply massive.”

These new players are just beginning to unlock the possibilities of connected homes to provide increased energy efficiency, comfort, and control. There is something happening in this space, but it is still in a very early stage of development. Many major insurance providers are interested in the smart home, but most are still exploring where they can find value in energy management. Expect to see more engagement from insurance companies in the near future.

 

Is Quality Over Quantity the New Game in Solar?

— November 21, 2016

Rooftop SolarThe solar module manufacturing industry is facing the second abrupt collapse of module prices in a decade. Prices fell by 12%-20% between January and October 2016 (depending on the technology and location) as the industry expanded manufacturing while the Chinese government decided to reduce its targets amid a deceleration in other markets, particularly in Europe.

Manufacturers have been in planning mode for the last few months thinking how best to ride out this dry spell. The last time the market saw a significant oversupply (between 2009 and 2012), prices fell 80% in a 3-year period. The survivors of the crisis managed to do so mostly by cutting costs, hence offering better value for the same product.

New Strategies Needed

But the same strategy is unlikely to work this time around, according to the US Solar Photovoltaic System Cost Benchmark: Q1 2016 report published by the National Renewable Energy Laboratory. The report states that for a residential installation in the United States in 2015, non-equipment-related costs were $1.91/W, or 65% of the total cost, while module costs were $0.64/W (21%) and inverter and other equipment costs were only $0.42/W (14%). Therefore, a 20% reduction in the cost of a module only reduces the total installation cost by about 4%.

The impact for utility-scale projects is more important. Installation costs for these projects vary significantly depending on the size, but non-hardware costs usually make up between 45% and 55% of the final cost of a project, while the module represents between 40% and 45%. Although cheaper modules could make a difference in this market, the current auction system used in different countries to give long-term agreements has made the segment ultra-competitive, leaving only a razor-thin margin (if any) for the whole value chain.

Manufacturers Adjusting Course

After months of planning, companies are now announcing new strategies to their investors. SolarCity/Tesla announced an alliance with Panasonic for its Gigafactory, as well as a new set of building integrated PV solar tiles and shingles aimed at carving out a luxury segment from the residential market, especially for new builds and re-roofers.

First Solar also chose quality over quantity. On November 16, it took the decision to scrap its Module 5 product, which had been expected to debut next year. The new plan is to instead accelerate the production schedule of its Module 6 and introduce it in 2018, a year earlier than previously planned.

On December 9, SunPower will be the last American module manufacturers  to make an announcement of its strategy. We will see if the company follows a similar pattern, but for the time being, it seems that quality is winning over quantity.

In Navigant Research’s Next Generation Solar PV report, published before the latest collapse of module prices, we forecasted that advanced solar modules would become mainstream by 2025. The plunge in prices could slow the adoption of new technologies, but it seems that American manufacturers are willing to sacrifice market share and are doubling their bets on higher quality (and higher price) products to keep positive margins.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author


{"userID":"","pageName":"2016 November","path":"\/2016\/11?page=2","date":"12\/11\/2017"}