Navigant Research Blog

Companies Aim to Fast Track Ultrafast EV Charging

— January 31, 2017

The fast charging of EVs at power levels surpassing 350 kW is quickly moving from concept to reality. In 2016, momentum accelerated for developing solutions that can charge a battery electric vehicle (BEV) to 80% capacity in 5 to 10 minutes, and 2017 will see the first solutions available. Many automakers are excited about the potential for closing the gap between electric and gasoline refueling, though there is currently no definitive standard or available light duty vehicle charging at 350 kW or higher.

At January’s Consumer Electronics Show, EV charging company ChargePoint unveiled the ChargePoint Express Plus, a modular charging system that can be upgraded to higher power levels over time, up to a maximum of 400 kW. Power to multiple charging stations are provided by ChargePoint-designed Power Cubes, which offer up to 500 kW of direct current (DC) output and can be coupled with other Cubes to accommodate more charging stations at a single location. According to the company, power can be distributed to up to four charging stations from a single Power Cube, and power output is dynamically distributed to the vehicles being charged.

ChargePoint Express charging stations will be constructed of multiple Power Modules that deliver up to 31.25 kW of power each, a unique approach for future-proofing charging stations. ChargePoint says the systems will be available in July 2017.

ChargePoint Express Plus

(Source: ChargePoint)

Last November, several automakers announced plans to co-develop a fast charging network in Europe that will provide 350 kW charging. Just a few weeks later, Energy company Enel joined with Verbund, Renault, Volkswagen, Nissan, and BMW in announcing EVA+, a fast charging network connecting Italy and Austria that will enable BEVs to be charged in 20 minutes. Never one to be upstaged, Elon Musk tweeted in December that Tesla Motors would be adding capabilities to the SuperCharger network to surpass 350 kW of power delivery for its proprietary network.

With the knowledge that BEVs are being developed with much faster charging capabilities, companies considering adding DC fast charging stations are now challenged on how to future-proof their investments. The tradeoff is between keeping the not inconsequential cost of offering DC fast charging under control today while preventing the sites from having to undergo costly increases in power delivery from the utility and having to replace the existing equipment in future years.

Companies investing in 350 kW fast charging stations today are hard pressed to get payback in electricity sales within 3-5 years, so to ask them to make ready a location with distribution equipment and capacity for up to 1 GW of EV charging is a tall order. Site hosts anticipating the ultrafast future of charging will also need to work with utilities to identify locations where they will not be disrupting the distribution grid.

 

DOE Announces Recipients of SBIR-STTR Phase I Grants for 2017

— January 31, 2017

BulbsThe Department of Energy’s (DOE’s) Office of Science recently awarded four Small Business Innovation Research (SBIR) grants and one Small Business Technology Transfer (STTR) grant for innovation in solid-state lighting (SSL) technology. The grants are aimed at helping the lighting industry reach performance and cost goals, as specified in the DOE’s SSL R&D Plan. First published in 2015, the SSL R&D Plan combined the DOE’s previously published Multi-Year Program Plan (MYPP) and SSL Manufacturing Roadmap. The SSL R&D Plan provides direction and goals for LEDs and OLEDs through 2030, with the aim of increasing energy savings.

What Are the SBIR-STTR Programs?

The DOE is one of eleven federal agencies that offer SBIR-STTR programs enacted under the Small Business Innovation Development Act of 1982. The programs work to increase technology innovation to address specific scientific and engineering challenges. The DOE’s SBIR Program aims to stimulate technological innovation, use small businesses to help meet federal R&D needs, and increase the participation of groups traditionally less represented, such as women and the socially and economically underprivileged. The STTR Program focuses on stimulating scientific and technological innovation and to nurture technology cooperation between small businesses and research institutions.

The SBIR-STTR programs supply funding for Phase I and Phase II projects twice each fiscal year, and for-profit US businesses with 500 or fewer employees are eligible to apply for the grants. Phase I recipients are awarded up to $150,000 for 6 months, and Phase II recipients are awarded funding based on Phase I results and generally do not exceed $1,000,000 for 2 years.

Grant Recipients

The FY2017 Phase I grants were awarded to Pixelligent Technology, Lumisyn, OLEDWorks, SC Solutions, and MicroLink Devices. The lone STTR grant, awarded to MicroLink Devices, is for a joint project between the company and the National Renewable Energy Laboratory to improve the performance of phosphide-based red and amber LEDs. This project aims to improve adoption of red and amber LEDs by allowing for integration with existing device designs and manufacturing processes.

Two of the SBIR grants, awarded to Lumisyn and SC Solutions, focus on LEDs. Lumisyn is working to increase the performance of nanocrystal-based silicones; the project will focus on properties of blue LEDs to produce white light. SC Solutions is poised to work on new heating techniques in metal-organic chemical-vapor deposition. The technique will reduce the need for binning in LED manufacturing and decrease the technology’s cost.

The remaining two SBIR grants, awarded to Pixelligent Technology and OLEDWroks, are for OLED technology. Pixelligent’s grant project will focus on improving the light extraction of OLED products by integrating a high refractive index extraction layer in the OLED material stack. This layer will provide enhanced light output, increase efficacy, and extend the lifetime of the product. OLEDWorks will work to reduce manufacturing costs in the hopes of making OLEDs more attractive for general lighting applications through its grant project. Based on the success of these projects in Phase I, companies could be awarded additional funding for further work on their projects.

Incorporating the R&D efforts of private organizations to help meet federal goals, as the DOE does through the SBIR-STTR programs, can further the overall success of SSL and increase market adoption of these products. Navigant Research projects increased adoption of LED and OLED technologies, and grants such as these will assist with growing the market of SSL products within the lighting industry.

 

Accurately Measuring Savings from Integrated Distributed Energy Resources Offerings

— January 31, 2017

AnalyticsEnergy efficiency and demand response (DR) programs have long been administered by utilities, third parties, and local governments using taxpayer or ratepayer funds. Most recently, integrated offerings that span energy efficiency, DR, and other program areas have become more feasible due to the advent of the smart grid. The integration of information and communications technologies with the power system is enabling a better balance between demand and supply side resources.

Integrated offerings are key indicators of a broader integrated distributed energy resources (iDER) future. Identifying program design and savings attribution methodologies for harnessing the benefits of these resources are critical to enabling public support for the innovators that will populate this future with integrated offerings that bundle value streams into streamlined solutions. While existing program design and funding constraints may not be able to seamlessly support these emerging technologies, avenues are opening and should be explored so as not to thwart the iDER future.

In a new white paper, Navigant presents a methodology to account for all of the energy and demand savings from an integrated energy efficiency and DR offering on an annual basis. The methodology separates the attributes of each program type while avoiding double counting of savings across programs. It also proposes methods to accurately portray the costs and benefits of each program.

Methodology Breakdown

Methodology BF

 (Source: Navigant)

Navigant recognizes that each jurisdiction has its own policies and protocols for operating an  iDER offering. Ongoing activities in New York and California provide relevant lessons in light of the states’ recent focus on iDER. Navigant used examples of these lessons to identify key considerations across three areas that integrated offerings focusing on energy efficiency and DR should consider when developing implementation plans:

  • The importance of data granularity for analysis
  • Exploring legislative channels to support integrated offerings
  • A focus on avoiding double counting benefits

Navigant draws the following conclusions from this assessment for consideration by relevant stakeholders, including utilities, other program administrators, regulators, customers, and third parties:

  • Well-established methodologies and protocols exist for quantifying energy and demand savings for energy efficiency and DR offerings across North America.
  • Advanced generation thermostats have a proven market track record of providing demonstrable benefits for energy and demand savings through established methodologies and protocols to verify and attribute savings.
  • Energy efficiency and DR programs are funded and evaluated through individualistic incentive budgets; a structure that confounds shared budgeting for cross-program functionality and hampers integrated offerings from capitalizing on their multiple value streams to gain market traction.
  • To avoid discouraging innovators from pursing integrated offerings, regulators and utilities without integrated evaluation methodologies should consider the methodology to develop interim polices and protocols for iDER offerings to count savings in two or more program areas until an integrated methodology can be developed through official channels.
 

Chevrolet Bolt Shows GM Is Serious About Making the EV Mainstream

— January 30, 2017

Electric Vehicle 2A decade ago, the documentary Who Killed the Electric Car? chronicled General Motors’ (GM’s) decision to repossess all of the existing EV1s from the small but loyal group of customers that had been leasing the pioneering battery electric vehicle (BEV). Ever since, skeptics have doubted the company’s true commitment to making BEVs—the Volt had an internal combustion engine, and the Spark EV was viewed by most as a compliance car. Wonder no more, because the 2018 Chevrolet Bolt demonstrates that GM is committed to making the BEV mainstream.

While Tesla has made big promises with the upcoming Model 3, GM has pulled ahead by now delivering Bolts to customers. Sales of plug-in EVs (PEVs) have fallen far short of the projections made when automakers revealed the first wave of modern BEVs at the beginning of the decade. Nonetheless, cumulative sales for Tesla, GM, and Nissan are beginning to approach the 200,000 level that will trigger a phaseout of federal tax credits. When that happens, the effective price for consumers will jump by $7,500, and PEVs will truly have to stand on their own merits in order to attract buyers.

Lessons Learned

As the first dedicated BEV developed by GM since the EV1 in the early 1990s, GM has applied lessons learned from its prior efforts and observations of what has happened with competitors. “The Bolt program was launched more than 4 years ago with a decree from then-CEO Dan Akerson to deliver an appealing car with a 200-mile electric range and $30,000 price point,” said Stuart Norris, managing director of the GM Korea Design Studio. Norris’ design team, along with the engineering teams in South Korea and Michigan, had a clean sheet of paper to work with.

Seeing the global market trends of increasing urbanization, the growth of ride-hailing services, and the rising consumer preference for higher-riding crossover vehicles all helped to define the general form factor of the Bolt. Advances in battery and electronics performance and cost enabled the team to meet their targets.

A comparatively small footprint in line with B-segment models like the Honda Fit means the Bolt occupies less space on the road. At the same time, its tall stance means there is ample room for at least four adults in its 95 cubic foot passenger volume. Smart packaging means it actually exceeds the 94 cubic feet of cabin volume in the much larger Tesla Model S, and it’s easy to get in and out for passengers of ride-hailing services like Lyft, in which GM is an investor.

Practical and Appealing

Performance is a big Tesla selling point, especially the oft-heralded “Ludicrous” acceleration. However, the much larger external dimensions and mass of the Model S mean that it’s not so nimble on twisty mountain roads or as maneuverable in tight urban areas like San Francisco. At half the price of the least expensive Model S, the Bolt doesn’t offer quite the same thrust, but with 200 horsepower and 266 lb.-ft. of instantly available torque, the Chevy still gets to 60 mph in under 6.5 seconds. More importantly, it handles both mountain passes and urban centers deftly, and based on a first drive, use of the low mode with its extra regenerative braking can boost the vehicle’s charge range well beyond the EPA-estimated 238 miles.

The launch of the Bolt and Model 3 has inspired other automakers to rethink their EV plans and boost the planned range to over 200 miles. If everyone can make their EVs as practical and appealing to drive as the Bolt, we may finally see a surge in sales that makes the emissions-free vehicle a mainstream reality.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author


{"userID":"","pageName":"2017 January","path":"\/2017\/01","date":"5\/27\/2017"}