Navigant Research Blog

Drones for Utility Asset Management, Part 2: Unlocking Future Potential

— January 3, 2017

Drone - CityThis post is the second in a two-part series. The first looked at regulatory developments in 2016 that are paving the way for the commercialization of drones for utility asset management in the United States.

Potential drone applications in the electric utility sector are vast, ranging from line and substation inspection to storm damage assessment and vegetation control. Drones mounted with video cameras, lidar, infrared, and hyperspectral imaging equipment stand to improve data collection and analysis, enable aerial mapping and 3D modeling of grid assets, and improve overall awareness of grid conditions.

Used strategically, drones hold promise to reduce inspection and maintenance costs, replace human workers in high-risk conditions, and increase the reliability and efficiency of grid operations. However, the market remains largely untapped.

The Future of Grid Monitoring

As the regulatory framework governing drone operations gradually takes shape, it is possible to imagine a not-too-distant future when drones are deployed for a variety of uses, including:

  • Monitoring vegetation overgrowth and risk, enabling quantitative, data-driven vegetation management programs
  • Replacing helicopter inspections of transmission lines, lowering costs and reducing the number of risky helicopter flights near power lines
  • Performing daily autonomous inspections of substations and other critical equipment, alerting grid operators to equipment damage, abnormalities, or maintenance needs
  • Surveying and assessing storm damage and other disasters, facilitating the development of targeted recovery plans and reducing grid downtime

These functions and others could either be performed by grid operators with in-house expertise or contracted out to drone companies in a drones as a service model.

Taking Technology to the Next Level

The potential for drones to transform utility asset management will increase as the technology becomes lighter weight, less expensive, more durable, and increasingly autonomous. Singapore-based H3 Dynamics offers an example of the possibilities presented by autonomous drone technology with its Dronebox system. The system consists of solar-powered drone charging stations designed to facilitate remote asset management with minimal human interference. Drones housed in the Dronebox can take off, land, and recharge autonomously and routinely, enabling the regular inspection of hard-to-reach transmission lines and other critical infrastructure. They can also be dispatched remotely on an as-needed basis.

H3 Dynamics’ Autonomous Dronebox

Dronebox(Source: H3 Dynamics)

Managing Big Data

Like other smart technologies deployed for grid monitoring and management, drones will produce ever greater volumes of data. One of the challenges facing grid operators will be translating that data into action to improve the efficiency, resiliency, and responsiveness of the power generation and delivery system.

Currently, grid operators are struggling to convert mounting volumes of data into real-time operational improvements. Making the most of drones for utility asset management will require advanced software systems and institutional processes to ensure high quantities of data translate into high quality action. While drones will likely save money in the near term (through streamlined inspections, displaced costly helicopter missions, improved storm damage recovery times, and reduced personnel needs), taking full advantage of the data drones produce will likely be a longer process with a steeper learning curve.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author


{"userID":"","pageName":"2017 January","path":"\/2017\/01?page=7","date":"12\/16\/2017"}