Navigant Research Blog

Materials Handling Sector Trends Upward with IoT and Automation

— May 4, 2017

As digitization and automation become mainstream, materials handling vehicles (MHVs) are evolving from passive tools to intelligent, connected pieces of the supply chain. Navigant Research believes that advanced technology options for MHVs are nascent in the materials handling industry and offer significant improvements over traditional options. As the needs of these users grow more complex, it will be important that equipment evolves as seamlessly and efficiently as possible.

The application of Internet of Things (IoT) technology is not limited to automation; it also increasingly enables data integration and using materials handling equipment as data sources. Businesses are turning to data-driven intelligence to guide decisions that improve operational efficiency and protect the bottom line. For MHVs, connected fleets and data-driven operations produce a wealth of small floor-level insights that are transformed into actionable business intelligence. Several companies recognize this and are making steps to ensure predictive analytics play a role in day-to-day operations.

IoT’s Role in Equipment Maintenance

Besides operational efficiency, IoT technology is playing an increasing role in equipment maintenance. Autonomously monitoring the condition of MHV components and generating trouble codes for service technicians can be used to detect failures and/or equipment wear before they affect the vehicle’s performance. For example, forklift manufacturer Linde is working on automating the procedure of troubleshooting fleet issues, ordering spare vehicle parts, and scheduling service engineers while simultaneously informing the customer about the order status. In turn, this makes it easier to streamline orders, identify bottlenecks, and provides transparency to customers.

Advanced Automation – Playing a Role in the Integration of Emerging Electric Powertrain Options

Communication-enabled battery data and chargers allow warehouses to:

  • Reduce or eliminate the battery room footprint by eliminating the need for bulky charging infrastructure
  • Improve forklift uptime by way of opportunity charging
  • Decrease the number of batteries and chargers onsite because of improved battery runtime

Navigant Research’s Advanced Electric Forklift Technologies in North America report states that advanced electric technologies for forklifts may have higher upfront prices. However, they can reduce operating costs with longer runtime and reduced fueling over the lifespan of the fleet.

Battery Advancements

Several battery manufacturers see increased interest in traction technologies nascent to the industry. One of the first companies to do so, Navitas Systems, recently announced it will deploy the Starlifter battery at a Defense Logistics Agency (DLA) in Pennsylvania. Navitas’ program objective is to evaluate the utility, feasibility, maintainability, and cost-effectiveness of replacing lead-acid batteries with fast-charging lithium ion (Li-ion) deep-cycle forklift batteries in DLA Distribution warehouses. The program also hopes to decrease total forklift battery costs of ownership and increase forklift operational readiness and productivity. Companies like Linde and Electrovaya also have recently announced new Li-ion options for forklift batteries as a result of the demands of current warehouse and logistics environments. Much different than the industry 20 years ago, modern warehouses have increased demand for operational efficiency, around-the-clock operations, and more advanced vehicles capable of working in cold storage climates.

Fleet managers look to operational data to improve efficiency and competitiveness. Real-time floor-level alerts are increasingly important so operators can address issues immediately. Customers also expect greater visibility into their lift truck fleet, support equipment, and ongoing asset health. In the future, vehicles will communicate with each other, decision-making will be at the user level, and batteries and charging infrastructure will combine with operator and truck data to inform fleet management across both forklift and powertrain platforms.

 

Transactive Future of 2030

— May 2, 2017

The power industry is just a couple of years into the most disruptive decade in its history. Industry transformation is a topic Navigant Research returns to on a regular basis in blogs. We often discuss the current issues regarding a particular technology, but we also discuss what the industry will look like at the end of this transformation.

The recently published report Defining the Digital Future of Utilities takes a look into the future and discusses how the utility industry might operate under an aggressive Energy Cloud scenario in 2030. In that scenario, there are ubiquitous distributed energy resources (DER)—in particular, solar PV, electricity storage, and EVs. In addition, residential prosumers are able to sell their excess generation on an open platform at market prices.

Transactive Energy Is Customer Centric

A fully transactive energy system could not look more different compared to the utility business model of just a few years ago. The biggest difference is that the balance of power in the energy value chain shifts to the point of consumption. By 2030, customers will sit at the heart of the electricity value chain. The old supply model is likely to be replaced by a combination of services developed to aid self-consumption and maximize returns on DER investments. While grid-sourced electricity supply is still required, customers’ electricity requirements are mostly met via their own PV and storage. Demand for grid-sourced power is significantly reduced (though it still increases dramatically when solar production stops in evenings).

Today’s supply-based business model is significantly disrupted: with every PV installation, the need for grid-sourced power diminishes. And when prosumers can sell their self-generated power onto open markets, they will compete against large-scale generators. Not every customer will want every kind of technology, service, or tariff. Consequently, the 2030 business model will be based on service offerings that meet each customer’s specific needs.

New competitive energy service providers will compete for customers with transactive energy services that optimize a customer’s returns from their DER investments. There will be significant areas for differentiation and a variety of service offerings. Many of these will be offered in regions where incumbent utilities currently enjoy the protection from a monopoly market. Only a small proportion of potential revenue will come from grid-sourced power supply; all the rest is up for grabs.

Adaptation Grows Ever More Crucial for Utilities

Incumbent utilities really are facing an adapt-or-die decision. Whoever owns the customer relationship will lay claim to the majority of value on offer. Some utilities are already investigating new service-based business models and trialing transactive energy platforms, although many are not. Those incumbents that resist the current transformation or complacently believe it will not affect their current business models could be in for a shock. Falling solar and storage prices strengthen the economic case for residential DER; the ability to sell electricity at market prices could replace existing feed-in tariffs. These are compelling arguments for transactive energy. A refusal to react to the requirements of the 21st century energy industry will see at least some utilities vacillate their way into extinction.

 

Distributed Energy and Community Choice Making Big Gains with Small Utilities

— May 2, 2017

The falling costs and improving economics of solar, wind, energy storage, and other distributed energy resources (DER) are driving a growing movement toward community-based energy systems around the world. The concept of community power has been around for centuries and is characterized by local ownership, local decision-making, and the local distribution of economic and social benefits. Over the past decade, island nations have emerged as pioneers of new community power models given their high electricity prices and natural requirement for local energy systems. The falling costs for DER, along with regulatory changes, are now laying the foundation for growing community power movements in larger and more traditional power markets. The first World Community Power Conference was held in Fukushima, Japan last November. The location of this event was no coincidence, with the city’s recent history highlighting the disadvantages and potential dangers of traditional, centralized energy systems.

Community energy movements could be a driving force in the reshaping of America’s energy systems and the growing DER industries. North America already has a strong tradition of community-based energy with thousands of cooperative and municipal utilities, in addition to the growing number of community choice aggregation programs around the country. However, many of these organizations have been locked into long-term contracts to buy nearly all their energy from a single provider. This dynamic has limited local renewable energy development, as power providers can charge these customers a fee for any lost revenue through the self-generation caps in contracts. A major breakthrough for these small utilities came when the Federal Energy Regulatory Commission (FERC) prohibited these self-generation fees in a ruling last year. This ruling freed cooperatives to begin local solar and other DER developments in their own communities, now a viable alternative to conventional sources. Cooperatives in the United States now own nearly 1.3 GW of renewable capacity and plan to add 2 GW more over the next 5 years.

Falling Costs Generate Increase in New DER Projects

Community power organizations are increasingly interested in renewables and local energy sources due to their falling costs and the potential to stimulate significant local economic development. DER also allow organizations to add generation capacity on a much more incremental and flexible basis, as opposed to contracting energy for a decade or longer. Since the FERC’s ruling last year, the number of cooperatives with new DER projects has grown significantly.

In early 2017, Texas Electrical Cooperatives Inc. (TEC) announced a partnership with energy solutions provider Advanced Microgrid Solutions (AMS) to develop distributed energy storage systems and provide DER management software for its members. The cooperatives will receive discounts on AMS’ products and services that help maximize the use of local generation resources and lower costs. One of TEC’s most ambitious members, the Pedernales Electric Cooperative, recently announced that it is developing 15 MW of local solar generation capacity at numerous sites in its territory. Elsewhere in the American Southwest, the Kit Carson Electric Cooperative in Northern New Mexico recently announced a solar and energy storage development plan to achieve summer solar independence by 2022. This plan includes the development of over 30 MW of solar generation along with energy storage that is expected to save ratepayers more than $50 million over the next 10 years alone.

With so much of the industry’s focus on large projects and the activities of major utilities, the numerous opportunities with cooperatives are often overlooked. In many ways, the community power movement and the efforts of these cooperatives are the epitome of the global energy transition and the shift to a grid centered around renewables and DER.

 

Self-Consumption Markets Are the Future of Solar

— May 2, 2017

Regulatory changes and the increase in retail electricity prices have made some markets ripe for new business models built around increasing solar self-consumption by adding other energy solutions (like batteries or Internet of Things, or IoT).

In my previous blog, I showed how solar installations can benefit from increasing levels of self-consumption. When this is the main economic driver for solar, we define the market as a self-consumption market. While the blog cited the United Kingdom as an example, that is not the only country in which this strategy works.

European Countries Lead Self-Consumption Markets

Here’s a selection of the most attractive self-consumption markets:

  • Germany: Germany is in a similar situation to the United Kingdom. The feed-in tariff in the country (€0.123/kWh [$0.135/kWh]) is significantly below some retail electricity prices. For example, residential rates cost around €0.30/kWh ($0.33/kWh). To fully benefit from a solar installation, Germans need to displace as much as possible of their own consumption. In addition, Germany offers an incentive to install batteries along solar PV systems. German government incentives cover up to 30% of cost for a PV system battery, making the economics of self-consumption even more attractive.
  • France: Like in Germany, the current French feed-in tariff of €0.1382/kWh ($0.151/kWh) for behind-the-meter installations of up to 36 kWp is below retail electricity prices (€0.20/kWh [$0.22/kWh] for residential customers). So there is also an arbitrage opportunity for installations, although the economics are weaker than in Germany.
  • Spain: Despite Spain’s bad reputation in the renewables sector—well deserved given the retroactive changes to its incentive program and the introduction of the infamous tax on the sun—the country is becoming an attractive self-consumption market for installations under 10 kW. Spain has the best solar resources in Europe. Now the levelized cost of distributed solar is below the retail electricity price, opening an arbitrage opportunity for solar installations with high levels of self-consumption.

Self-Consumption Markets by Attractiveness

(Source: Navigant Research)

US Self-Consumption Markets Are Trying to Catch Up

The economics of self-consumption of solar in the United States are weak given the dominance of net metering as the main tool to incentivize solar. There are some states that are moving away from pure net metering that will increasingly be more attractive to providers of integrated solutions.

One example is Arizona. Per the new settlement reached between Arizona Public Service (APS) and local solar advocacy groups, energy exports of new distributed solar installations in Arizona will not be included in the old net metering program. Instead, it gives all new distributed solar customers the option to take a demand-based rate or a time-of-use rate.

If the new structure is approved by the Arizona Corporation Commission (ACC), it would set the self-consumption offset rate around ¢12/kWh, which includes a grid access fee that APS solar customers must pay. The new export rate, based on the ACC’s newly adopted resource proxy model, would be ¢12.9/kWh. Although these changes will not be enough to attract investment in expensive technology like batteries, it does send a signal to end users to start behavioral changes to increase self-consumption. It might be enough to encourage some level of IoT investment in energy management systems and automation.

Near-Term Growth Is Unlikely

From a purely growth perspective, self-consumption markets are likely to disappoint in the short term. The extra complexity they present needs to be well understood by solar players. In addition, end users and business models will need to be tested before being rolled out cheaply en masse. The strategies that are successful in those markets—and less dependent on incentives and more so on solar economics—are most likely to rule the distributed solar sector in the future.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author


{"userID":"","pageName":"2017 May","path":"\/2017\/05?page=8","date":"12\/15\/2017"}