Navigant Research Blog

For Hospitals, a Path to Resilience

Noah Goldstein — January 27, 2015

My colleague Madeline Bergner recently wrote about efforts to reduce the greenhouse gas emissions from hospitals and other healthcare facilities.  That effort is paralleled by a movement to make these spaces less vulnerable to natural disasters and other disruptions, as well.

In December, President Obama gathered healthcare leaders to announce a set of new recommendations for making the country’s healthcare facilities more climate resilient.  Hurricane Sandy caused over $3 billion in damage to healthcare facilities alone, triggering federal attention to the issue.  At the event, the U.S. Department of Health and Human Services announced a web-based Climate Resilience Toolkit as well as a best-practices guide, “Primary Protection: Enhancing Health Care Resilience for a Changing Climate.”

The guide describes a number of issues that have caused hospitals to lose power during recent disasters.  These include reliance on local infrastructure (namely local [municipal] steam generation), aging infrastructure, and a reliance on onsite diesel generators, which are often poorly maintained and rely on limited fuel supplies.

A Holistic View

The report also cites a challenge in the approach to backup power.  Backup systems are viewed as having no value during normal operations, and therefore “are less likely to attract adequate investment and maintenance from the private sector.”  By viewing backup power as emergency-only, the hospital is viewing power in binary terms; the big diesel generator is there when you need it, and takes up space (and money) when you don’t.

A more holistic view of energy use can lead to a more resilient facility.  The report cites a number of strategies, including the use of combined heat and power, energy efficiency, and passive survivability.  This last concept drives building design and functionality so that hospitals can still function without power.  With operable windows, passive heating and cooling, and naturally ventilated spaces, these levels of resiliency can be accomplished.

Generator Hospital

Navigant Research’s reports on Grid-Tied Energy Storage present a range of technologies that can aid in power management all the time, not just during a crisis.  By viewing grid connectivity as a continuum, facilities can mitigate the effects of disasters and make money by selling power into the grid.  The resilient healthcare facility of the future may not just be one that can survive a disaster but one that provides power to the community 365 days a year.

In upstate New York, the town of Potsdam just announced a microgrid project that will connect 12 facilities using 3 MW of combined heat and power, 2 MW of solar, 2 MW of storage, and 900 kW of hydro-electric generation.  The local hospital is a key stakeholder in this project, led by Clarkson University.  Other partners include General Electric (GE) Global Research and GE Energy Consulting, National Grid, and the National Renewable Energy Laboratory.

Innovative technology is not only being deployed for the entire hospital facility.  At the Texas Scottish Rite Hospital for Children in Dallas, Texas, flywheel manufacturer Vycon installed two 300 kW flywheel systems just to power the imaging facility.  The benefits of flywheels include high reliability, power density, and overall quality, as well as the quiet nature of backup power.  While the hospital has only suffered a few power outages in recent decades, the protection of the expensive equipment from power spikes and voltage drops is of great value.

Leave a Reply

Your email address will not be published. Required fields are marked *

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author


{"userID":"","pageName":"For Hospitals, a Path to Resilience","path":"\/blog\/for-hospitals-a-path-to-resilience","date":"12\/11\/2017"}