Navigant Research Blog

The Growing Importance of Recycling Spent Advanced Battery Materials

Ian McClenny — April 27, 2017

Advanced batteries across all applications are proliferating the market in unfathomable numbers. Navigant Research expects advanced batteries to reach a cumulative 24.2 GW in new capacity globally by 2020—for stationary energy storage alone. As these assets have lifespans ranging from 4 to 20 years depending on the technology, the issue of what to do with these batteries when they reach the end of their usable lives is an important question that technology manufacturers, system owners, and customers must be able to answer. Second-use options are viable in some sectors, but recycling spent batteries will be a major market in the coming years. Manufacturers and governments around the world are recognizing the importance of recycling and how it translates to long-term sustainability goals.

Benefits of Recycling Batteries

Lead-acid batteries have been utilized in the market for several decades, but advances in more sophisticated technologies like lithium ion (Li-ion) and flow batteries have encroached on lead-acid market share. The spent lead-acid assets are retired and recycled in large amounts on a daily basis. An example of this is China’s announcement of doubling its lead recycling target to 2.5 million tons by 2020. China arrived at this target because the average lead-acid battery life is 4 years; batteries made in and around 2015-2016 will be available for recycling by 2020. Lead-acid battery recycling efforts are also ramping up in the United States. California lead battery manufacturers and consumers have to pay a $1 fee for each battery they make or buy following the implementation of the Lead-Acid Battery Recycling Act (AB2513). Among other recommendations, several California government officials requested adding an additional $15-$20 to each lead battery sold to help process it after its usable life.

Li-ion batteries are a bit trickier to recycle. Available in items ranging from consumer electronics to EVs, extracting the most valuable materials inside—namely, lithium and cobalt—are important to consider when reprocessing these batteries. Compounded with forward-looking lithium availability and supply chain issues, securing lithium access will be important for the industry in the future. Li-ion battery recycling is in its early stages, and there are only a handful of these plants in existence today. With few Li-ion battery chemistries available, the lack of standardization plays a role in limiting the emergence of more recycling facilities and best recycling practices for these batteries. Today, recycled lithium can be up to 5 times the cost of newly mined resources; the cost differences have limited demand for lithium recycling to date, but future price increases and new regulations can change this.

Raw material prices for advanced batteries have sporadically changed this past decade and lithium prices alone have nearly tripled. Other factors like demand in competing sectors (e.g., pharmaceuticals, construction, etc.), geopolitical relationships, and environmental concerns will also play a role in the future of battery material supply chains. Recycling advanced batteries is likely to be one of the principal methods to combat against volatile raw material prices and resource availability.

New Revenue Streams

Battery OEMs should look to partner with raw material suppliers, users, and governments to gain a strong position in their respective supply chains and increase collaboration across different sectors. Considering alternatives (e.g., second life usage), the battery recycling industry has the potential to generate significant returns. Companies that position themselves to take advantage of retiring assets will be able to access new revenue streams on top of existing businesses.

Leave a Reply

Your email address will not be published. Required fields are marked *

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author


{"userID":"","pageName":"The Growing Importance of Recycling Spent Advanced Battery Materials","path":"\/blog\/the-growing-importance-of-recycling-spent-advanced-battery-materials","date":"12\/15\/2017"}