• Network Technologies
  • Energy Cloud

Mapping Smart City Applications to Smart Street Lighting Platforms

Richelle Elberg
Jun 28, 2017

City managers interested in smart street lighting applications today can choose among a multitude of technologies and vendors. Questions such as cost, functionality, useful life, and ability to accommodate other applications over time, however, can make the decision-making process overwhelming.

To provide guidance, Navigant Research performed a heatmap analysis in a study commissioned by smart street lighting vendor Echelon. The heatmap compares the characteristics of various narrowband, mediumband, and broadband network technologies with the performance and cost characteristics required by 10 different smart city applications. Network technology features such as costs, reliability, security, latency, and bandwidth, among others, were evaluated.

Smart City Platforms and Applications: Suitability Heatmap

(Source: Navigant Research)

The analysis indicated that for a balance of cost and functionality, the mediumband options, such as power line carrier (PLC) and radio frequency (RF) mesh technologies, offer several advantages. For basic lighting controls, there are several narrowband connectivity options that will work at a competitive price—but they are limited in terms of capacity for additional applications to be layered on top.

In contrast, broadband options such as point-to-multipoint RF solutions, public 3G or 4G networks, or Wi-Fi may be robust enough to handle even high bandwidth applications like closed circuit TV—but at a higher price. Wi-Fi—public access or private—may also bring higher security concerns to municipalities, as there are publicly available hacking tools for cracking Wi-Fi networks. Also, public access Wi-Fi may see its throughput constrained by citizens streaming video over their phones; this could impair the efficacy of higher speed applications such as smart traffic light controls or gunshot detection.

Advanced Controls Have Advantages

At the most basic level, lighting controls provide elementary features such as remote on-off control, dimming, and scheduling functions. There is also a wide range of advanced functions that can be enabled by intelligent controls, including energy monitoring and billing, performance monitoring, color controls, adaptive lighting, and emergency response.

Beyond the capabilities for advanced lighting controls, street lighting networks also have the potential to support a range of non-lighting applications: environmental/air quality monitoring, traffic monitoring, smart parking, and gunshot detection. An even wider range of applications may benefit from sharing the network infrastructure. These might include traffic light controls, smart waste management, public messaging/ digital signage, or high definition video surveillance.

New applications for smart street lighting platforms are emerging still. New ideas such as controlling sprinkler systems or controlling public restroom locks have been raised—and other new ideas are sure to emerge as connectivity becomes more ubiquitous.

Better Quality of Life

A growing number of cities globally are looking for ways to not only reduce their energy expenses, but also improve the efficiency of city operations and provide a better quality of life to their citizens. As such, the selection of the appropriate smart street lighting platform that meets both long-term goals and near-term constraints should be given careful consideration.

For further detail on smart city applications, street lighting as a platform, and the relevant connectivity platforms discussed herein, see the Smart Street Lighting as a Smart City Platform white paper, available here. Navigant’s Navigating the Energy Transformation white paper, available here, also provides a related discussion of smart city solutions as a platform in the Energy Cloud era.