• Energy Technologies
  • Energy Technologies
  • Onshore Wind
  • Offshore Wind

New Wind Turbine Battleground Focused on 4 MW Units

Jesse Broehl
Sep 28, 2017

The latest battleground in the ever tightening wind turbine market is with onshore wind turbines in the 4 MW range. Until now, this segment has had few offerings and only minor commercial deployments. No less than four turbine OEMs announced new 4 MW turbine models over the past few months. The overwhelming majority of annual onshore wind turbines installations are in the 2 MW to 3 MW range, and innovation continues to occur rapidly in that nameplate space.

Power Contract Auctions Prevail

However, a number of factors are pushing turbine OEMs to design more turbines with higher nameplate capacities. This includes the steady shift in Europe and other markets from fixed priced contracts for wind to highly competitive power contract auctions. These auctions squeeze power purchase agreement pricing for wind projects as low as developers and investors are willing to go, and taller tower, larger rotor, larger nameplate machines promise higher annual energy production (AEP). Larger turbines also maximize AEP in a geographically limited location. Europe in particular is already a population-dense continent and land availability for wind projects is becoming increasingly constrained.

There are also efficiencies of scale with producing the most megawatt-hours from each single wind turbine foundation and tower. This factor is more quantifiable with offshore wind, where foundations and installation cost is proportionally much higher than it is for onshore. In general, onshore turbines represent around two-thirds of onshore project CAPEX while offshore turbines represent one-third of offshore project CAPEX due to the higher foundation cost. This is why offshore wind turbines may double in size by 2025. The same principle applies (to a lesser degree) that the more AEP per turbine in the onshore realm, the better the project economics.

Competitors Abound

The following are summaries of the most recently announced turbines competing in this new 4 MW battleground:

  • GE Renewable Energy: GE Renewable Energy announced its first turbine offering in the 4 MW range with a new 4.8 MW unit that features a 158-meter rotor enabled by carbon blades. GE has historically avoided carbon fiber for most of its blades, but the demands of longer blades for this oversize turbine may have made carbon use unavoidable. The turbine will have around 30% higher AEP than GE’s previous 3 MW range turbines. Tower heights are 101 meters, 120.9 meters, 149 meters, and 161 meters. GE’s acquisition of Alstom Wind, LM Wind Power, and Blade Dynamics likely played a role in this new 4 MW platform.
  • Vestas: Vestas upgraded and uprated its 3 MW range to now include three models in the 4 MW range. This includes the high wind V117-4.0/4.2MW, which is designed to handle wind gusts up to 80 meters per second that would enable it to handle hurricane and typhoons. V136-4.2MW and the V150-4MW/4.2MW are medium to low wind turbines designed for most areas in Europe and other global markets.
  • Nordex: Nordex is uprating its 3 MW Delta series into a 4 MW-4.5 MW turbine with a 149-meter rotor for medium wind speeds. The turbines are planned for prototype testing in the third quarter of 2018, followed by several pre-series turbines and series production starting in 2019. The company touts the turbine’s wide power range from 4 MW to 4.5 MW, which is ideal for adapting individual installations to a specific grid operator’s requirements and to local wind conditions or noise restraints. Steel towers come in 105- and 125-meter hub heights and concrete-hybrid towers offer hub heights of 145 and 164 meters.
  • Enercon: Germany’s Enercon has been ahead of all other turbine OEMs with 4MW class turbines, having had its EP4 turbines (4-4.2 MW) E-126 and E-141 already commercially available roughly 2 years ahead of Vestas and others. In fact, the newest E-series turbines are downrated from a previous E-126 model that had exceeded 7 MW nameplate capacity as far back as 2012. The E-141 units feature concrete-steel hybrid towers to enable a 159-meter hub height. Enercon is also rapidly evolving its 4 MW class turbines with some radical design departures, which is thoroughly explained by Windpower Monthly.