• Oil Companies
  • Utility Innovation
  • Distributed Energy Resources
  • Energy Technologies
  • Energy Technologies
  • EV Charging
  • EV Charging

Support for EV Charging Presents New Challenges and Opportunities

Alex Eller
Mar 09, 2017

As new EV models are introduced at increasingly low prices, the need for charging infrastructure is growing around the world. According to Navigant Research’s report, Electric Vehicle Charging Services, plug-in EVs will represent 22.6 million MWh of demand by 2020. Major efforts are underway by governments, utilities, and private companies to capitalize on this new source of energy demand that is necessary to facilitate the transition to electrified transportation. With this new demand for electricity comes both the possibility for disruptions to the grid and significant opportunities for solutions capable of overcoming these new challenges.

Motivations for Change

Around the world, governments are stepping up efforts to support the growth of the EV industry by facilitating the development of charging infrastructure. Perhaps the most significant effort is the recently announced plan for the Chinese government to support the installation of 800,000 new EV charging points in 2017 alone. The main drivers for governments to support the EV industry are to reduce air pollution, enable a new source of economic growth by supporting local vehicle and component manufacturers, and drive new infrastructure investments. These issues are particularly relevant in China, where urban air pollution is a national health crisis and where EVs are a growing domestic industry.

Private companies are becoming increasingly involved in the EV industry. In early 2017, multinational oil major Shell announced that it will begin installing EV chargers at the company’s gas stations. Shell and other oil companies are looking to EV charging as an opportunity to diversify revenue streams, as the current low gasoline prices are reducing profit margins and overall gasoline consumption is projected to continue to decline.

Challenges and Solutions

Finally, utilities in many areas have been major supporters of the transition to electric transportation. At a time when overall electricity consumption is decreasing and more customers are generating their own power, EV charging is likely to be the most significant source of new demand on the grid, and utilities are eager to help it grow. This dynamic is evident in the recently announced proposal by utilities in California to spend approximately $1 billion on new EV charging infrastructure. While EV charging is an opportunity for utilities, they are also faced with a number of major new challenges caused by the technology. EV charging causes considerable spikes in demand, often with little control or coordination. Additionally, charging stations are often located at the edges of the grid on circuits that may already be approaching capacity constraints during peak demand periods.

EVs and charging systems are integral pieces of the rapidly evolving distributed energy resources (DER) ecosystem. For many DER, the overall value and ability to effectively integrate with the existing grid is greatly enhanced by pairing complementary technologies together. Distributed energy storage may emerge as an ideal technological match for EV charging. There are already a number of partnerships between EV charging and energy storage providers aiming to reduce the effect of charging on congested infrastructure and shift renewable energy generation to align with EV charging needs. To fully realize the benefits of combined EV charging and energy storage, along with most DER, sophisticated software platforms are required to align the needs of the grid with those of customers. Software platforms with the ability to monitor and coordinate EV charging and optimize the use of energy storage to limit detrimental effects to the grid can alleviate many of the concerns that have limited the deployment of charging infrastructure to date.