Navigant Research Blog

Energy Storage Industry Jobs Linked to Energy Storage Capacity

— May 25, 2017

Jobs in the energy storage industry in the United States are expected to grow substantially over the next decade. In a white paper prepared for the Energy Storage Association (ESA) on an Energy Storage Vision in the United States, Navigant Research modeled the value of 35 GW of energy storage by 2025 against the cost of storage in the same period. Value was measured in terms of job creation, emissions reductions, grid operational cost savings, and reliability.

Jobs in the US Energy Industry

In January 2017, the US Department of Energy (DOE) published its U.S. Energy and Employment Report, calculating the total employment across sectors of the energy industry, including storage. The findings in this report provided a reference point for estimating total employment in the industry between 2017 and 2025.

According to the U.S. Energy and Employment Report, there were a total of 90,831 individuals directly employed in the US energy storage industry during 2016. These direct jobs include battery and component manufacturing and R&D, engineering and construction (project development), operations and maintenance, sales, marketing, management, administrative, and other positions. Most of these portions of the value chain will see job growth as the industry scales.

Energy Storage Capacity and Jobs

Navigant Research estimates that approximately 225 MW of new energy storage capacity was deployed in the United States during 2016. Using the DOE estimate as a starting point, this represents 403.7 jobs per MW of installed energy storage system capacity. Given that the storage industry is still nascent, and considering the complexities of storage technology project development, we expect the number of jobs per unit of capacity to start high and then decrease rapidly over time. By comparing solar PV industry jobs per unit of new capacity over the past decade, Navigant Research estimated future job creation under the ESA Energy Storage Vision market forecast.

In 2008, about 250 MW of new solar PV capacity was installed in the United States, and the industry supported approximately 35,000 jobs. As the market and annual deployments grew, the number of jobs per MW of capacity decreased substantially. In 2016, an estimated 10,800 MW of new solar PV was built in the United States, and the industry employed 260,777 people per the Solar Foundation’s National Jobs Census 2016. This equates to 24.1 jobs per MW of new capacity.

 Decline in Number of Energy Storage Industry Jobs per MW

Navigant Research expects a similar decline in the number of industry jobs per MW of new energy storage capacity as the market matures. The number of solar jobs per MW of new capacity decreased gradually until 2011, the year after the solar industry experienced a bump in deployments. Market growth triggered industry learning, efficiency, and economies of scale in the solar PV space. Given the current state of the storage industry and growth projections, Navigant Research estimates that the energy storage industry is on the verge of experiencing a similarly dramatic decrease in the number of industry jobs per MW of new capacity. The number of jobs per incremental MW in the storage industry is expected to decrease from 403.7 in 2016 to 50.9 in 2021 and 32.5 in 2025 for a total of 368,836 jobs in 2025.

Cumulative Energy Storage Industry Jobs, Vision Scenario, United States: 2016-2025

(Source: Navigant Research)

Navigant Research will discuss the Energy Storage Vision results and other key findings during a webinar with Matt Roberts, executive director of the ESA, on May 30 at 2 p.m. EDT.

 

Natural Gas Flaring: Time to Turn a $30 Billion Waste Stream into Profit, Part 2

— May 22, 2017

Part 1 of this blog series covered the state of natural gas flaring; this post examines specific developments allowing stakeholders to put the gas to use.

Flaring, the intentional burning of excess natural gas, contributes a great to deal to climate change. Therefore, this practice is regulated across the globe in the hopes of meeting climate goals. But is regulation necessary? Ideally, this wasted gas would be put to profitable, efficient use, limiting the need for specific flare gas regulations. In fact, several developments are pointing toward the profitable use of associated gas, including improved gas-to-liquids (GTL) technologies, improved onsite combustion technologies, and access to electricity offtakers through microgrids. Consider the following:

  • GTL technologies are improving rapidly. Notably, small-scale GTL players like Velocys, CompactGTL, and many others have commercially available products that convert natural gas into a variety of liquid products, including diesel and methanol, among others. These products have generally higher local value than natural gas and can be transported easily. This points to more opportunities in the developing world—much of which relies on liquid fuels, but has limited access to pipelines. GTL technologies have been held back by low oil prices, but become quite economical in many cases when oil costs over $50 per barrel—a scenario playing out with more regularity.
  • Improved combustion technologies, including natural gas reciprocating engines and microturbines, are opening new opportunities. Manufacturers like Caterpillar and Cummins offer dual fuel generator sets (gensets) that can mix natural gas into oilfield diesel generators. Meanwhile, microturbine vendors like Capstone Turbine offer units as small as 30 kW that can run on a wide range of fuels. GE’s Jenbacher gensets, well suited to handle the variable composition and impurities in associated gas, account for more than 450 MW of installed associated gas generation worldwide.
  • Access to new electricity offtakers through microgrids has the potential to put flare gas to use. Improvements in solar, storage, and microgrid controls technologies make microgrids a popular phenomenon—though such microgrids often call for a consistent baseload fossil fuel source to optimize generation. This is a good match for wellhead gas, which is produced with a relatively consistent output. Various companies are developing microgrids tied to oil & gas production, from Horizon Power in Australia to Mesa Natural Gas Solutions in the United States.

Global Opportunities

As a measure of global opportunities, consider developments in two key markets: Nigeria and Indonesia. Both major oil-producing nations, these countries rank No. 7 and No. 12, respectively, on The World Bank’s flare gas ranking list, accounting for a collective $2 billion in wasted gas (based on the $5.61 per million Btu measure previously outlined).

Nigeria has an aggressive strategy of 75% electrification by 2020 and recently released minigrid regulations that encourage decentralized generation. This, combined with continued oil & gas growth, points to opportunities for the $1.5 billion of wasted flare gas.

Indonesia, meanwhile, recently released new rules that incentivize wellhead power developments—provided that they are close to gas fields and to existing transmission lines and consumers. With more than $500 million in gas flared there, this regulation will open opportunities for microgrid developers, generator vendors, and other stakeholders in distributed power. With billions of dollars of gas going up in smoke and technologies and regulations pushing for efficient generation, opportunity looms large in flare gas alternatives.

 

Wärtsilä Acquires Greensmith: Genset Manufacturers Expand Their Role in the Energy Cloud

— May 19, 2017

This week, Wärtsilä announced its acquisition of Greensmith, highlighting a significant trend: generator set (genset) manufacturers are acquiring systems integration and controls capabilities. As this trend continues, the companies are embedding themselves ever deeper into the distributed energy paradigm outlined in Navigant’s Energy Cloud.

Hybrid/Storage Plays

Wärtsilä of Finland is a major global producer of larger reciprocating engines for power generation and marine uses. Yet, genset manufacturers in a variety of segments have been building relationships with storage and controls companies. This strategy can be considered both defensive and offensive in the fast changing genset industry, as explained below. Some specific moves since 2015 are shown in the following figure.

Generator Manufacturers with Publicly Announced Hybrid/Storage Plays

(Sources: Navigant Research, Company Press Releases)

In addition to Cummins, Caterpillar, Wärtsilä, and Doosan, other generator manufacturers, including General Electric (GE) and Aggreko, have announced storage offerings developed either internally or by undisclosed vendors. Most of the above companies also offer solar PV solutions in conjunction with their installations, whether through partners, through distributors, or directly.

There is clear appeal in genset/storage/PV hybrid systems. PV provides clean daytime power at cheapening costs, while gensets provide flexible baseload on demand for nighttime hours and fluctuations in demand. Solar production forecasting, as in the cloud monitoring systems developed by CSIRO, can adjust the operation of gensets to improve integration and save fuel costs (often a significant few percentage points). Storage then provides multiple benefits: in addition to smoothing out PV production, batteries can optimize genset operation, allowing for fuel savings, smoother operation, and sometimes even elimination of redundant gensets.

Defense and Offense

With the latter fact in mind, this acquisition/partnering strategy can be thought of as playing defense—acquiring a backfill revenue source for what may be a declining need for number of systems on any given project. Consider the example presented by Wärtsilä here. Of the six gensets in the “spinning reserve by engine vs storage comparison,” two have become redundant with the addition of battery storage, since the storage provides the spinning reserve formerly afforded by the gensets. If vendors see lower genset sales in cases like these, they may jump at the chance to backfill with sales of controls, storage, or PV.

Apart from its defensive aspects, this strategy also has significant offensive upside. As power production becomes ever more decentralized, genset manufacturers with solid distributed energy resources (DER) strategies will be well positioned to capture market share. There exist major opportunities in microgrids and virtual power plants—indeed, all across the Energy Cloud. As the core technology providers of thousands of legacy microgrids, genset vendors are both driven and well suited to serve a major role in the future of electricity.

 

Transforming the Way We Live, Work, and Move with Wireless Power: Part 2

— May 17, 2017

This post originally appeared on the MIT Enterprise Forum of Cambridge website.

Development of any new technology, particularly one that goes to market in a technology licensing business model, cannot be performed in a bubble. It requires the feedback of users to refine future advances. There simply is no market for a technology that doesn’t provide a compelling value proposition. The development of wireless power is no exception.

As mentioned in part 1 of this blog series, the MIT Enterprise Forum of Cambridge CleanTech Committee brought together a panel of experts to recount this journey from lab technology to commercial product and reflect upon future applications for wireless power. The panel, Transforming the Way We Live, Work & Move, was moderated by Benjamin Freas, principal research analyst at Navigant Research. It included Marin Soljačić, PhD, professor of Physics at MIT and founder of WiTricity; Alex Gruzen from WiTricity; Ajay Kwatra from Dell; and Patrizia Milazzo from STMicroelectronics.

The Partner Landscape

Indeed, much of the panel was composed of WiTricity partners that are helping to deliver on the vision of making a broad range of products truly wireless. Kwatra relayed Dell’s journey through wireless power implementation. Wireless power is not a new concept to Dell; it shipped its first laptop with wireless charging capabilities in 2009. Dell’s vision is to enable true all encompassing mobility by providing a cable-less desk. Wi-Fi introduced freedom from the Ethernet cable, and now the last cord is power.

The first early foray used inductive coupling rather than WiTricity’s magnetic resonance technology. As a result, the laptop required precise placement in order to charge and provided a poor experience. Though magnetic resonance solved this problem, it was not ready for implementation in a laptop. WiTricity relied on input from Dell as it established the efficiency and wattage needed. Dell knows how its products are used and what challenges users face, so it was able to bring this expertise to WiTricity in a partnership to create a viable product.

The Road Ahead

Wireless charging of mobile phones has already reached mass-market adoption and is beginning to appear in laptops and EVs. However, the actual use of wireless power—even in devices that are equipped with it—has been persistently low. Consumer awareness remains a challenge. Current wireless power technology does not provide users with a truly wireless experience.

Nonetheless, the future of wireless power is promising. The increased reliance on electronics and the constant need to power them are driving wireless adoption. Increased awareness and use of wireless power functionality have been generated as a result of the creation of more devices that have wireless charging capabilities and the expansion in public wireless charging infrastructure.

In the future, the expansion of wearable electronic devices and Internet of Things (IoT) devices will further magnify the need for new power solutions. The establishment of public wireless charging infrastructure in locations such as coffee shops and airports is expected to reinforce adoption through the network effects they create. But user experience will be the ultimate driver of wireless power.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author


{"userID":"","pageName":"Energy Technologies","path":"\/tag\/energy-technologies","date":"5\/26\/2017"}