Navigant Research Blog

Navigant’s 2017 Mid-Year Energy Market Outlook: Ongoing Drivers and Cutting-Edge Trends in North American Energy Market

— August 31, 2017

Industry trends and uncertainties continue to transform the North American energy market. Examples include increased renewables in the power sector, technological innovation in energy storage, shifting supply and demand patterns in the natural gas market, and environmental policy uncertainty due to the administration change. Navigant’s 2017 Mid-Year Energy Outlook (NEMO) analyzes how these trends and others are expected to affect the energy and capacity mix as well as market prices over the next 24 years.

Energy Demand

The rate of growth in energy consumption and peak demand has decreased in recent years despite an increase in economic growth. The United States and Canada appear to be transitioning from the long-term trend where growth in energy consumption closely tracked economic growth. While NEMO forecasts overall growth in both consumption and peak demand, the levels of growth (as well as energy efficiency and other demand-side resources) vary between regions. For example, Electric Reliability Council of Texas (ERCOT) and parts of Western Electricity Coordinating Council (WECC) are among the faster growing regions in the forecast. However, New York, New England, and PJM are expected to see lower levels of growth, leading to a slowdown in generation additions. This marks a shift in PJM, where coal retirements, the capacity market, and low natural gas prices have driven the construction of many new merchant natural gas combined cycle power plants in recent years.

Renewable Energy Growth

Despite the absence of a carbon policy, Navigant expects that solar installations will continue to grow in North America as costs decline—though not as steeply as in recent history—and as the technology continues to be pushed by state policies and consumers. In 2016, the United States installed 14.8 GW of solar PV projects, second only to China for annual installations that year. The wind forecast is more dependent on the federal Production Tax Credit that is already declining and set to expire by 2020. This has led to a boom in construction that is expected to peak in 2020 (the last year projects can go online and still get 100% of the tax credit) before declining steeply.

The convergence of increasing renewables penetration and declining battery costs indicates that battery storage is likely on the precipice of increased deployment across the electric grid for renewables integration and the provision of ancillary services. For the first time, Navigant’s NEMO includes an energy storage addition outlook. Energy storage is being implemented in areas such as California to meet policy targets without adding significant new natural gas generation. The revenue that storage projects would expect to receive from avoiding curtailment of renewables is not yet enough to cover the overnight cost of storage, though this could change in the future as the costs of storage decline and renewables penetration increases.

Natural Gas Market Transformation

While the power market grapples with the evolving energy generation mix and the associated effects on the grid, the natural gas market in North America continues its own evolution characterized by threshold events. Exports of natural gas have overtaken imports into the country for the first time in 60 years. US natural gas pipeline exports to Mexico have more than quadrupled since 2010. Exports by ship occurred for the first time from the lower 48 states, with the Cheniere Sabine Pass liquefied natural gas (LNG) export facility delivering LNG to the world market in February 2016. From this point forward, at least to the end of the NEMO term in 2040, Navigant expects exports by pipeline and by ship to continue increasing. Exports are anticipated to grow to represent over 18% of the US natural gas market by 2040.

Navigant’s NEMO covers the changing supply and demand dynamics in the natural gas market, continued renewables generation buildout, slowing load growth, the introduction of emerging technologies like storage, and the continued absence of a federal carbon policy. David Walls and Rob Patrylak will present further details on Navigant’s forecast via a webinar on September 13.


What Would a Perma-Eclipse Do to Solar Power?

— August 15, 2017

On August 21, a total solar eclipse will captivate millions of observers across the United States. Early on its 1,800 mph path across the country, the moon’s shadow will block 5.6 GW worth of solar power plants in California, the top solar state. The California Independent System Operator (CAISO), the state’s grid operator, is well prepared to respond with increased flex-ramp usage and regulation service procurement—essentially a combination of demand management and flexible natural gas and hydropower units. CAISO is aided in part by lessons learned from the 2015 eclipse in Europe, which has higher renewables penetration than the United States.

The eclipse reminds us that the sun’s rays can experience volatility beyond known daily and annual cycles and begs the question: what would happen if the sun stopped shining? Though the question may sound alarmist, it is not entirely trivial. A significant impact event would have solar-blocking potential, with impacting objects above 1 km (about half a mile) in diameter potentially ejecting large masses of pulverized rock into the stratosphere. Solar-blocking geoengineering projects, while intentionally limited in scope, are specifically designed to block the sun’s rays. Movie buffs will remember that humanity scorched the sky and purposefully blocked out the sun to battle solar-dependent robots in The Matrix trilogy.

Solar PV accounted for just about 2% of global electricity production in 2016 but was also the world’s leading source of additional power generating capacity. With some grids anticipating 30%, 50%, or higher eventual PV penetrations, the potential degree of vulnerability is significant—though the probability of diminished insolation is low.

Utility-Scale Solar PV Generators and Path of August 21 Solar Eclipse

(Source: US Energy Information Administration)

A Portfolio Approach

The appeal of solar PV, especially when combined with storage, is undeniable. A clean, distributable, and increasingly inexpensive energy source, solar PV will be a crucial source of power globally. But, much like a contrarian stock market investor, it is worthwhile to look beyond the hype to see what risks loom. To use another stock market analogy, asset diversification is important on the electric grid.

Most of our energy ultimately comes from the sun, and this is especially true of today’s zero-carbon resources. Wind energy is partially driven by daily solar cycles and experienced a 10% decline during Europe’s eclipse. Hydropower, a flexible generation resource that will help ramp during California’s eclipse, is also driven by the sun’s ability to evaporate water. Biopower, another important carbon-neutral dispatchable resource, is driven by the sun, though on the longer scale of months to years. Compared to solar power, each of these should be less directly affected by potential solar-blocking phenomena. Meanwhile, nuclear, geothermal, tidal, and carbon-captured fossil fuel power are not dependent on the sun’s rays. A vague threat to the availability of solar energy does not suggest these should be adopted en masse. However, some consideration should be given to adopting a diversified, risk-mitigated portfolio of generation.

What would happen if a heavily solar-dependent Earth suddenly lost that energy source? Our collective gaze would undoubtedly turn from the sky back to the ground—to the likes of nuclear, geothermal, and for the quickest fix, fossil fuels. Being prepared ahead of time with a diversified, efficient, and clean energy mix could help mitigate that risk.

Still, this month’s eclipse will affect the US grid little since fossil fuels still account for most of the national power supply. For now at least, we can use plenty more renewables to diversify our energy portfolio.


A Roadmap to the Coming Hydrogen Economy in One Chart

— July 5, 2017

Hydrogen has been discussed as a future energy carrier for decades, though infrastructure challenges and high cost seem to always keep broad adoption in the hypothetical realm. However, as the cost of electrolyzers and renewable energy continue to tumble and climate policies tighten, hydrogen is again experiencing renewed global interest.

Versatility and Disruptive Potential

Hydrogen’s versatility boosts its appeal as an energy carrier. It is the only energy carrier that has significant disruptive potential across the world’s energy-consuming segments: power, transport, industry, and heating. Electrolytic hydrogen—which comes from splitting water molecules by electrolysis, often with renewable electricity—is broadly seen as the key to clean hydrogen.

As seen in in the following chart, electrolysis remains expensive today. This is because electrolyzer capital costs have not fallen much below $1,000/kW. Renewable electricity costs, while falling dramatically, remain relatively high compared to a very high penetration future. But as those two costs fall, as is projected through 2025 and beyond, the cost of clean hydrogen falls substantially.

Hydrogen Cost Comparison with Other Energy Carriers, World Markets: 2017, 2025, and Beyond

Notes: Commodity costs include representative data from California, Germany, and Japan. Electrolytic hydrogen (2017) based on DOE data and actual filling station costs, while future prices presume large-scale (100 MW) systems with continued declines in both cost of renewable electricity and electrolyzer capital costs. SMR is steam methane reformation.

(Sources: Navigant Research, US Department of Energy, International Monetary Fund, International Energy Agency, California Energy Commission)

Hydrogen Use in Transportation

Transportation, which favors expensive energy-dense fuels, is among the more attractive uses for hydrogen. Indeed, electrolysis is providing a growing share of hydrogen to rollouts of both passenger vehicles and heavy duty vehicles like buses—in places such as China, California, Germany, and the United Kingdom. The success of battery EVs (BEVs) represents a major hurdle for hydrogen, though there is growing reason to believe that both energy carriers will be embraced. For example, the range-extending capabilities of hydrogen on battery vehicles are continuing to improve.

Other Hydrogen Uses

Hydrogen is also highly valued by industry as an important process input to production of ammonia, glass, and metals. Industrial uses represent an existing hydrogen economy that can be decarbonized and made more efficient by renewable hydrogen. Finally, hydrogen could revolutionize power generation and heating through fuel cells or other thermal generators, though it is expensive compared to natural gas, especially in the United States with its ongoing shale gas boom. Still, if the aggressive cost decline targets are met, even these two heavily polluting segments could be disrupted by hydrogen energy.

Hydrogen detractors correctly point to the infrastructure challenges of hydrogen storage, compression, and transport and the steep cost declines needed. If those hurdles can be cleared, this chart may hold two additional reasons for optimism: carbon pricing and hydrogen’s efficiency bonus. Carbon pricing, which is on the rise, makes hydrogen more attractive, as it displaces fossil fuels. Finally, comparing by units of energy hides a key efficiency bonus of hydrogen: it is often twice as efficient as the fossil fuels it replaces. This is because both stationary and vehicular fuel cells can be around 60% efficient, which is roughly twice the efficiency of combustion-based technologies after losses.

A Roadmap to Future Energy

This chart can be considered a roadmap to an eventual hydrogen economy. Electrolytic hydrogen is already competing with fossil fuels in the transport and industrial segments, and will continue to grow its market share. Provided the favorable carbon policies and cost declines continue, hydrogen has the potential to be the best and most versatile energy carrier of the future.


Postcard from Hawaii to Nation’s Capital

— June 29, 2017

The mood at the second annual VERGE conference in Honolulu, Hawaii last week was upbeat about the future of clean energy, despite pushback on the US mainland. Apparently, those committed to a clean energy agenda, including the private sector, are more motivated than ever to push forward with aggressive programs to bring renewables resources online. They aim to not only combat climate change, but also create jobs.

Conference attendees clearly supported the supposition that clean energy is here to stay, no matter what might be unfolding in Washington, DC. The proposed dismantling of the federal Environmental Protection Agency’s Clean Power Plan and recent withdrawal of the United States from the Paris Agreement on climate change only seemed to serve as motivation to push forward even harder.

Hawaii’s Renewable Energy Vision

Hawaii is the first (and so far) only state in the United States to commit to a 100% renewable energy future. Governor David Ige of Hawaii didn’t seem to blink in the face of counter currents flowing from the Trump administration. A confessed energy geek, he seemed to take particular delight in the fact that Hawaii has emerged as a key testing ground for bolstering commitments to infrastructure needed to integrate variable renewables for both power and transportation services. Since each island of Hawaii is its own separate electric grid control area and retail costs are high due to such a reliance upon imported sources of fossil fuel, Hawaii is in a unique spot. The economics in the state clearly favor renewable energy.

Industry Momentum Is for Renewables

Even Connie Lau, CEO of Hawaiian Electric Industries, reported that her investor-owned utilities brethren have all bought into the clean energy agenda. If the administrative about-face on clean energy had occurred 8 years ago, then the momentum for renewables and other clean energy may have been halted, but that time has passed. Past government and industry investments have driven down the price of solar PV, wind, and batteries while software innovation to manage such resources has scaled up.

Nevertheless, there are challenges in implementing aggressive clean energy goals. Just look at California, where the state is paying neighboring states to take excess solar production. Many models show that once one reaches 80%-90% renewables penetration, the cost of integration can jump dramatically.

One of the key tools Hawaii will rely upon to reach its 100% renewable energy goal is to integrate devices like energy storage into self-balancing distribution networks such as microgrids. As of now, over 90 MW of new energy storage devices has been authorized by state regulators to be installed among the Hawaiian islands, with the majority of that capacity—70 MW—to be installed in Oahu.

Continuing Conversation

I had the pleasure of helping to run a 4-hour workshop on how to overcome challenges to developing a microgrid at VERGE with cutting edge microgrid market makers such as ENGIE and Spirae. I also moderated a session on how microgrids boost clean energy on islands, with featured speakers from ABB—which is pushing forward with a 134 MW microgrid designed to reach 50% renewable energy on the island of Aruba by 2020—and representatives from Hawaii and the US Navy.

Ironically, there may still be some room for collaboration between Hawaii and Washington, DC in the clean energy space. As I noted in a previous in a previous blog, one area where the interests in promoting national security in DC and a clean energy agenda in Hawaii align is the microgrid space. Watch for a report on that topic later this year.


Blog Articles

Most Recent

By Date


Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author

{"userID":"","pageName":"Renewable Energy","path":"\/tag\/renewable-energy","date":"9\/26\/2017"}